
A New Golden Age of Radio
Development tools for Software Defined Radio

Dr. Richard G. Ranson, Radio System Design Ltd

(richard@radiosystemdesign.co.uk)

Abstract
Software Defined Radio (SDR) is now the mainstream of radio communications technology.
Previously it has involved a complex mix of traditional RF analog hardware, fast digital logic
including quite challenging analogue to digital converters (ADC) as well as interface software;
making it rather daunting for companies interested in possible applications but not well versed
in the various technologies. However, hardware manufactures now have competitively priced
development platforms bring down the cost of entry into this market. Then in parallel to this
there has been a standardisation of software and interfaces to these devices, greatly
simplifying things. The result is that the cutting edge of radio technology has never been more
accessible.

Where as previously, companies needed a clean room, other facilities, as well as specialist test
and assembly equipment costing £100,000s, now all that is needed is a good soldering station
and a lab bench worth just £100s. Basically, with even a half decent computer, some open
source software and a low cost development platform, experimenters and professionals alike
can experiment with SDR and work with real signals to develop new ideas and products. In this
talk I will show some examples of SDR hardware, one of which is the ADALM Pluto costing
<£100, but with surprisingly advanced capabilities. To supplement that, a suite of open source
software including GNU Radio can be assembled into a standalone Linux distribution that can be
put onto a USB memory stick and run on any mac or a pc. This can then be the basis to get
started and work on your own ideas for radio products and applications.

Introduction
In the last 15 years, entirely behind the scenes, basic radio technology has been completely
revolutionised. First, the full scale adoption of digital modulation and advanced coding has
enabled bandwidth efficiency approaching the Shannon limit. Then, the integration of digital
and RF CMOS has created sophisticated, flexible hardware platforms capable of converting data
up to, and down from, low microwave frequencies, using only a hand full of components. The
end result, SDR, is now professional main stream, but thanks to the decreasing cost of hardware,
innovative development platforms and a wealth of software tools the cost of entry into this
market has fallen to a level accessible to all.

In this paper and the accompanying talk, I will review some of the common SDR hardware
devices and software interface requirements. Some have straight forward driver installation
while others require some command line magic. But, all that can be rolled up into a custom
Linux distribution to get someone stated. The final section shows the remarkable GNU Radio
with the GUI base extension GNU Radio Companion (GRC).

Page 1 of 10

Hardware

RTL SDR
This is the entry point for many. It covers a number of different devices which are all basically
USB dongles to receive DAB radio and digital TV. They are a hobbyists first choice because the
cost is typically <$20, but various projects have shown that useful things can be achieved even
with this quite primitive device. It is receive only, with various models using different RF tuners
and the RTL2831 or a derivative as the ADC and decoder. There are software drivers to bypass
the decoder and output the raw IQ data samples for further processing in a pc. Roughly speaking
these devices can tune from 70 to 2000 MHz with 8 bit, 4 MHz digitisation. There are however
various hacks to enable much lower than specified operating frequencies, opening up the device
to HF radio enthusiasts.

One pioneer in this area is Osmocom [1], who have an excellent web site reporting on the
activity of others as well as drivers and other useful software tools such as local and remote
logging of data samples, processing the FFT of samples and streaming demodulated broadcast FM
radio signals. Below are just a few interesting, at least to me, projects that illustrate what can
be done with such a simple device:

• GNSS SDR – Receiving various global positioning system satellite signals [2]

• DUMP1090 – Decoding ADS-B signals used for aircraft location and navigation [3]

• LTE Cell Scanning [4]

• Receiving high definition weather satellite images [5]

• Decoding local bus stop display transmissions [6]

Pluto SDR
This is part of a family of teaching and demonstration devices produced by Analog Devices Inc
(ADI) (Figure 1). It was released last year, but only just now becoming available to UK
components distributors. The cost from ADI is $150, but is available at a discount of ~$100 or
~£80. There is a wiki and lots of other useful information, including schematics and firmware on
the ADI web site [7].

Pluto is a 1 Tx by 1 Rx, full duplex, device with the key parts being an AD9361 RF transceiver
and a Zinq FPGA, providing a bytes to RF and back peripheral, powered by the USB interface
(see Figure 2). The advertised frequency range is 325 - 3800 MHz, but experimenters have
shown that it can be hacked to work from 70 – 6000 MHz [9]. The AD9361 provides 12 bit
digitisation (ADC and DAC) with up to 30 MHz bandwidth, however in practice this can be
restricted by the USB interface BW. The FPGA provides a small footprint Linux kernel for very
basic interface and control via SSH and a virtual TC/IP port via the USB connection for data.

Page 2 of 10

 (a)
(b)

(c)

Figure 1: ADALM Pluto (a) functional block diagram,(b) PCB top view and (c) case

The FPGA also facilitates some useful RF features, such as programable interpolation/decimation
and digital filtering as well as some BIT functions such as generating Tx data from a Direct
Digital Synthesiser (DDS) implemented in the FPGA. This allows a one or two tone test signal to
be generated internally and transmitted from the device itself.

More general and useful control and data flow is facilitated via the Industrial I/O Interface (IIO)
library. The IIO library provides an Applications Programmers Interface (API) for direct control
of the hardware (e.g via C++ or python), with low level register access as well as more useful
high level data streaming to/from the AD9361 device. A good example of the utility of the API is
a wrapper for the library that provides a plug in interface to Pluto for GNU Radio, but more on
that later.

RxA

RxB

RxC

Baseband

GPO

Rx Channel 1

Rx Channel 2

12-bit

Tx Channel 1

Tx Channel 2

SPI

Reset

CTRL

DIV

Tx
Mon

Calibration and
Correction

70MHz - 6GHz

Tx

Rx

C
h

1
 I/Q

C
h

2
 I/Q

C
h

1
 I/Q

C
h

2
 I/Q

Temperature
Sensor

70MHz - 6GHz

Rx

Tx

DIV DIV

Rx 61.44 MSPS
Enable State

Machine (ENSM)

TxA

TxB

AD9361

DIV

GND

Dual
10-bit

Automatic
Gain
Control

□ Manual
□ Slow
□ Fast

2
5

 - 6
4

0
 M

S
P

S

FIRHB2 HB1 GAINHB3
I

ADC

RF Channel Bandwidth
200kHz - 56MHz (I/Q)

÷1
÷2
÷3

÷1
÷2

÷1
÷2

÷1
÷2
÷4

FIRHB2 HB1 GAINHB3
Q

ADC

Phase
Splitter

Rx Tx

Rx Decimation
Digital Filtering and Equalization

RF Channel Bandwidth Tx Interpolation
Digital Filtering and Equalization200kHz - 56MHz (I/Q)

1x
2x
3x

1x
2x

1x
2x

1x
2x
4 x

I

Q

FIRHB1HB2HB3DAC

Phase
Splitter

3
2

0
 M

S
P

S

FIRHB1HB2HB3DAC

In
p

u
t M

u
x

AUX DAC

AUX ADC

LNA

TIA

TIA

ATTN

O
u

tp
u

t M
u

x

C
M

O
S

 / LV
D

S
 IN

T
E

R
FA

C
E

Tx 61.44 MSPS

LOOP
BACK

PN &
BIST

715 MHz - 1430 MHz
DCXO

VDD_GPO

VDD_INTERFACE

VDD_MAIN

RX2A_P,
RX2A_N
RX1A_P,
RX1A_N
RX2B_P,
RX2B_N
RX1B_P,
RX1B_N
RX2C_P,
RX2C_N
RX1C_P,
RX1C_N

TXMON2

TXMON1

RXLO

TXLO

SPI

CTRL

AUXDAC1
AUXDAC2

TX2A_P,
TX2A_N
TX1A_P,
TX1A_N

TX2B_P,
TX2B_N
TX1B_P,
TX1B_N

AUXADC

XTALP

XTALN

RADIO
SWITCHING

RESETB

P0_[D11:D0]/
TX_[D5:D0]

P1_[D11:D0]/
RX_[D5:D0]

GND

1.8 - 3.3V

1.2V - 2.5V

1.3 V AD9361 RF Transceiver
• Complete IQ receiver

with 12 bit ADC
• Complete IQ

transmitter with 12 bit
DAC

• Three fractional N
synthesisers
◦ Independent Rx, Tx

tuning
◦ FDD and TDD

operation
◦ Combined ADC and

DAC clocks

Figure 2: summary of AD9361 capabilities.

ADI also provides a standalone GUI interface to Pluto called IIO Oscilloscope that allows real
time control of many of the features of the device as well as a display of the received signal in
the time or frequency domain.

This is shown in Figure 3, where some screen captures show one of the control panels (a) for the
DDS generator, where you can select up to 2 tones at various frequencies and phases. The Tx is
looped back to the Rx via a cable and parts (b) and (c) of the figure show the time and
frequency domain views of the 2 tone signal detected by the receiver.

Page 3 of 10

(a)

(b)

IIO Oscilloscope

a) Part of the control window, showing
just the DDS core control in the
FPGA

b) Two tone RF loopback in time
domain view

c) Two tone RF loopback in frequency
domain view

(c)

Figure 3: IIO Oscilloscope application.

Lime SDR mini
Myriad RF is a UK company that has pioneered various open source hardware and software
devices [14]. The LimeSDR mini is only recently available, as a crowd funded project spun off
from the more professional LimeSDR. The mini is a 1 Tx, 1 Rx full duplex transceiver using the
LMS7002M tuner which has much of the digital I/O also integrated onto the chip and a USB
interface. The key specifications are tuning range 10 – 3500 MHz, with 12 bit digitisation and up
to 30.72 MSPS. The drivers and software installation is the same as for the older, more capable
LimeSDR, but is has been reported to be quite complex to install, so it is not recommended as an
introduction to SDR for most people. Those who have a device have shown impressive results
using some well known applications such as GQRX, SDRangel [8], SDR#, SoapySdr and Pothos,
which is a GNU Radio spin off.

Page 4 of 10

((a) (b)

(c)

a) Half of the Tx functional block diagram
b) Half of the Rx functional block diagram
c) Sketch of LimeSDR Mini PCB

Figure 4: LimeSDR Mini and key elements of LMS7002M block diagram.

Figure 4 shows some information on the LimeSDR mini. In (a) and (b) I have extracted key parts
of the LMS7002M Tx and Rx signal paths. In essence, much like the AD9361, the LMS7002M chip
has an IQ up/downconverter, DAC/ADC and digital filtering. The same chip has other
programmable DSP (Digital Signal Processing) hardware as well as serial data for control and I/O
interfaces to stream IQ data for Rx and Tx.

Unfortunately, even though I ordered a device in November with a January 2018 promised
delivery, this has slipped; so I have not received the board and so not been able to perform any
measurements. Hopefully I will have one in time for the presentation and to show in the
exhibition space at the meeting.

Other Devices
There are a number of other low cost devices that are used for SDR experimentation, many of
which are reviewed on the RTL-SDR web site [10]. A more advanced RTL style device is called
the Fun Cube Dongle [11]. It covers 150 kHz -240 MHz and 420 MHz – 1900 MHz with the most
notable feature being selectable RF preselection bands. This makes it quite a bit more practical
than most RTL devices with both a respectable noise figure and intermodulation intercept.
Another popular receive only device, also from the UK, is the SDR Play [12]. This is a 1 kHz –
2000 MHz receiver with 14 bit quantisation and up to 10 MSPS sampling. Great Scott Gadgets
makes the Hack RF One [13], now a quite mature device, also popular with hobbyists having both
Rx and Tx capabilities but with only half duplex operation. It covers 1 – 6000 MHz with 8 bit
quantisation and up to 20 MSPS. For even higher performance, Lime have a more mature SDR
with multi-channel capability and higher sampling rates [14]. Interestingly, this uses the same
LMS7002M chip, so despite being just 1x1 TRx, the mini has a multi channel RF capability. Lastly,
Ettus Research, now part of National Instruments, makes a range of devices under the umbrella,
Universal Software Radio Peripheral (USRP) [15], these are self contained, boxed and at the high
end of the price performance curve.

Page 5 of 10

Software
While the hardware is impressive, it is only useful, because of drivers and free software to
connect to and work with the radio Then thanks to the freeware Linux OS, there are rapidly
developing standarised libraries and programming techniques.

All hardware vendors provide basic drivers and installation software to get you started. Also
there are programs like SDR#, GQRX and others that are general purpose, in the sense of working
with different devices, and in essence provide a front panel and display for the underlying SDR.
All this is only possible because various standard libraries and software APIs. But there are also
more specialist tools to help understand and use DSP with this kind of hardware. Out of those I
have chosen to highlight GNU Radio for reasons that I hope will be apparent.

GNU Radio
This is a fantastic open source project that was started almost 10 years ago, and has developed
into an industrial standard. There is a documented C++ API for dedicated applications and
maximum performance, but there are also python wrappers for many useful functions as well as
an introductory/educational level of operation via GNU Radio Companion (GRC). It provides a
graphical interface to a system simulation canvas and access to a huge library of common DSP
blocks. Ideas can be developed and analysed by connecting various blocks into flow graphs that
consist of one or more sources of data, some processing, and one or more sinks to view and save
the data. There are ideal source blocks such as signal and nose generators, but hardware such
as an RTL SDR or Pluto have dedicated source blocks as well. Similarly, sinks can be visualisation
devices such as an oscilloscope (time sink) or a spectrum analyser (frequency sink), or transmit
hardware like Pluto. GRC is an ideal way to get started with DSP and SDR concepts as well as a
powerful tool develop your own ideas and systems.

The GNU Radio project has a number of useful introductory tutorials and Figure 5 shows part of
one that illustrates several SDR concepts [16]. The flowgraph shows a random data source
feeding a constellation modulator that in this case creates a DQPSK data stream which is then
upsampled by 4 and band limited using a root raised cosine (RRC) filter. Such a signal could be
fed to an actual transmitter sink such as Pluto, but as this is just a simulation, the data is fed to
a channel model block to emulate noise and frequency selective distortion from Tx to Rx. The
simulated receiver blocks are on the second row of the diagram. The polyphase clock
synchroniser is used to recover symbol timing and the Constant Modulus Algorithm (CMA) block
to resolve frequency selective distortion (i.e. multipath). There are 4 sink blocks to visualise
the receive signal in frequency and as a constellation diagram before and after the CMA block.

Note that the actual flowgraph incorporates a number of control elements and other structural
blocks that while not that complicated are not essential to demonstrate the capabilities here. If
you follow the reference [16] then there is a link to the git hub repository for all the grc files
where you can see all the details of this and other example flowgraphs.

Page 6 of 10

Figure 6 shows the output from the simulation. Note that there is no timing information
transferred between blocks so the Tx and Rx are independent of each other. The channel also
adds noise and frequency distortion to the signal to be representative of a real system. The
polyphase synchroniser recovers the symbol timing from the signal stream and that is evident by
points clustered round synchronised symbol points in the top left constellation display. But there
is still both noise and frequency distortion from the channel, which is evident as noise (fuzziness
in the constellation clusters) and frequency distortion in the spectrum display below.

Page 7 of 10

Figure 5: GRC flowgraph simulation of a DQPSK Tx RX link with timing recovery

Figure 6: frequency and constellation sink displays
from the GRC flowgraph Figure 5

The right hand constellation and frequency displays shows the signal after the CMA block. This
uses the fact that the signal should have a constant average power to help determine and then
correct for multipath distortion. It is clear that the constellation cluster is much tighter than on
the left hand side, (not just a point because of the added noise) and the frequency response is
now flat. The combination of the polyphase synchroniser and CMA blocks achieve recovery of the
symbol timing, optimising the receiver sampling clock, minimise inter-symbol interference and
correction for amplitude and phase distortion from the transmission channel. These and other
techniques are the key to the power of DSP and GRC helps illustrate the technology and
innovation that has enabled modern high speed, high efficiency radio communications that today
approaches the Shannon limit.

This is just a flavour of the capabilities of GNU radio. To keep the diagrams simple and illustrate
principles, I have used some of the high level function blocks within GRC, but the software
includes a huge library of elements to explore lower level detail where it maybe desirable. It is
also extendable, giving users the option to create their own blocks either in python or C++ as
well as separate, so called OOT (Out of Tree) modules.

The PlutoSDR source and sink are such OOT examples, build from source provided by ADI [17]
and using the industrial IIO library API. For example, Figure 7 shows a GRC flow graph to
generate a random QPSK data sequence feed to the PlutoSDR sink, which is the Tx side of the
device. The colour of the I/O ports on the blocks indicate the data type, with green being
integer, orange float and blue complex data. Note also that this illustrates a few of the low level
DSP block provided by the GNU radio library and alluded to earlier.

Figure 7: flowgraph for the Pluto sink as a QPSK transmitter

The constellation plot shown in Figure 8 (a) clearly shows the QPSK format and (b) shows a
spectrum analyser measurement of the Pluto Tx output. Notice that the base band signal in (a)
is just QPSK data with one sample per symbol, this is upsampled and half band filtered internally
by the AD9361 hardware, then up-converted to 430 MHz. The signal measured in (b) is from a
spectrum analyser showing that the output RF spectrum is well defined and quite clean. As an
aside, note that the signal is comparable in quality to one from a signal generator costing
several 100 times the price of Pluto.

Page 8 of 10

(a) (b)

Figure 8: results of the flowgraph Figure 7, (a) constellation of data generated and
(b) measured spectrum of the PlutoTx output

In summary GNU Radio provides a flexible and comprehensive frame work to investigate DSP and
SDR technology. It gives access to basic as well as high level DSP function, ideal and real signals
as well as an interface to real hardware. A tremendously comprehensive software package
under the GPL-3 licensing umbrella; meaning, at the most basic level, that it is free for personal
as well as commercial use. Quite remarkable.

Teaching Platform and Linux Distribution
Radio System Design Ltd has developed a Linux live boot disk (actually a USB drive) as a stand
alone platform for teaching SDR. It can be used with a mac or pc to provide a common Linux
based GUI desktop environment to work with SDR devices. The USB drive contains an Ubuntu
live distribution with drivers for RTL devices, Fun Cube Dongle, PlutoSDR and some USRP
devices. Various free support software is also installed including GNU Radio, IIO Oscilloscope,
Jupyter (previously iPython) and Octave.

A “Hands on SDR”, training course will be launched this year, using the student’s laptop and
booting with this specialised Ubuntu distribution from a USB drive. Then, using the PlutoSDR
device and the various software tools, student can experiment with SDR concepts, transmit and
receive actual signals and learn about this exciting new area of radio technology by working with
actual hardware. If this might be of interest to you or your organisation, I have included a quick
(<2 mins) survey that you can fill in to help steer the direction of the course. [18]

Conclusion
All the hardware and software used for this talk cost less than £250 (after all, I do live in
Yorkshire;-)

The hardware examples given illustrate a wide range of price and performance for a number of
potential applications. The real story is, that each one gives a level of performance for a price
that is a fraction of any previous generation of similar devices. Coupled with low cost or free
software, these devices provide a development platform within the budget of even the smallest
of SMEs. Perhaps more impressive, is that they provide capabilities at frequencies that were
previously regarded as quite exotic, dramatically lowering not just the monetary cost, but also
the specialisation and degree of difficulty needed to get ideas and products to market.

Page 9 of 10

Finally, it is worth considering the implications for some traditional applications. A brief search
on the web shows people emulating (or worse) a GSM base station with this kind of hardware.
Then on the military side, while something like a LimeSDR does not have state-of-the-art
performance, it is pretty impressive. So with some imagination, additional RF hardware,
particularly RF filtering, and a laptop computer, it could easily provide a medium to high
performance Signal Intelligence (SIGINT) platform in a briefcase for under £3,000. That is
something like a factor of 20x less than traditional approaches. Then, with such low cost RF
hardware, multiple devices could be used for DF, coordinated for phased array capabilities such
as radar warning or coordinated in time to scan and provide a comprehensive EW platform.
These devices are truly revolutionising radio technology.

References and Links
Much of the power of the devices and ideas discussed comes from the open software and
hardware initiatives in recent years. I have included many links that I have found useful as a
way to help others get started. But I have kept it to only one per topic, so this is by no means
complete.

Also a note of caution, one of the drawbacks of these open source, open hardware style devices,
is that the developers are so immersed in the product that they think that providing all the
schematics and source code is a substitute for any other documentation. Those interested in
looking further should tap into the many blogs, user forums, YouTube videos and sources such as
Hackaday where the same community is more communicative and helpful to beginners.

1. https://osmocom.org/projects/sdr/wiki/rtl-sdr

2. http://gnss-sdr.org/docs/tutorials/gnss-sdr-operation-realtek-rtl2832u-usb-dongle-dvb-t-
receiver/

3. https://www.rtl-sdr.com/ads-b-decoder-dump1090-now-available-windows/

4. http://www.evrytania.com/lte-tools

5. https://www.rtl-sdr.com/tag/weather-satellite/

6. https://www.rtl-sdr.com/reverse-engineering-radio-controlled-bus-stop-displays/

7. https://wiki.analog.com/university/tools/pluto

8. https://www.rtl-sdr.com/limesdr-mini-unboxing-initial-review/

9. https://www.rtl-sdr.com/adalm-pluto-sdr-hack-tune-70-mhz-to-6-ghz-and-gqrx-install/

10. https://www.rtl-sdr.com/

11. http://www.funcubedongle.com/

12. https://www.sdrplay.com/

13. https://greatscottgadgets.com/hackrf/

14. https://wiki.myriadrf.org/LimeSDR

15. https://www.ettus.com/

16. https://wiki.gnuradio.org/index.php/Guided_Tutorial_GRC

17. https://wiki.analog.com/resources/tools-software/linux-software/gnuradio

18. https://www.surveymonkey.co.uk/r/HKP9MZ9

Page 10 of 10

https://osmocom.org/projects/sdr/wiki/rtl-sdr
https://www.surveymonkey.co.uk/r/HKP9MZ9
https://wiki.analog.com/resources/tools-software/linux-software/gnuradio
https://wiki.gnuradio.org/index.php/Guided_Tutorial_GRC
https://www.ettus.com/
https://wiki.myriadrf.org/LimeSDR
https://greatscottgadgets.com/hackrf/
https://www.sdrplay.com/
http://www.funcubedongle.com/
https://www.rtl-sdr.com/adalm-pluto-sdr-hack-tune-70-mhz-to-6-ghz-and-gqrx-install/
https://wiki.analog.com/university/tools/pluto
https://www.rtl-sdr.com/reverse-engineering-radio-controlled-bus-stop-displays/
https://www.rtl-sdr.com/tag/weather-satellite/
http://www.evrytania.com/lte-tools
https://www.rtl-sdr.com/ads-b-decoder-dump1090-now-available-windows/
http://gnss-sdr.org/docs/tutorials/gnss-sdr-operation-realtek-rtl2832u-usb-dongle-dvb-t-receiver/
http://gnss-sdr.org/docs/tutorials/gnss-sdr-operation-realtek-rtl2832u-usb-dongle-dvb-t-receiver/

	Abstract
	Introduction
	Hardware
	RTL SDR
	Pluto SDR
	Lime SDR mini

	Other Devices
	Software

	GNU Radio
	Teaching Platform and Linux Distribution
	Conclusion
	References and Links

