Care and Feeding of your nano VNA Practical use of VNAs

Richard G. Ranson, G3ZTB

Introduction

- VNA nano variants and 'competition'
- Calibration what is it and why so important
 - No maths
- Measurements
 - Just the basics and some examples
- Tips better understanding and results
- Software

nVNA – are Everywhere

- Beware, there are <u>many</u> clones
 - Just search in 'shopping' for nano VNA
 - Various names
 - Different screen sizes, accessories
 - Claimed frequency ranges
- I have no idea which are good
- The official site <u>is good [1]</u>
 - And you support the actual developers
 - Batteries <u>not</u> included- for Nano VNA Plus 4 [2]

theRSGB

🕨 YouTube

@theRSGB

InVNA vs Other Brands

- Professional VNAs are generally more accurate $\sim_{\pm 35,000}$
 - Better stability and repeatability
 - Also higher freq. options
- But much more expensive
 - Examples just 2 of many others
 - HP (Agilent, Keysight)
 - Copper Mountain
- Nano VNA is from 10 to 100 times lower cost

HP8753

Copper Mountain

M50451300

~£8,000

VNA – Vector Network Analyser

- Measures both magnitude <u>and</u> phase
 - Your SWR meter just measures magnitude
- Measures impedances at RF frequencies
 - Your LCR meter only measures at ~100kHz
- Measures over a range of frequencies
 - e.g. shows antenna BW, filter response etc
- Measures over a wide dynamic range
 - Easily measures a filter stop band (>60dB)

VNA Measurements

- S Parameters
 - Reflection coefficient
 - Ch0 is S11 $S_{11} = \frac{Reflected}{Incident}$
 - Transmission coefficient
 - Ch1 is S21 $S_{21} = \frac{Transmitted}{Incident}$

- For a low loss device under test (DUT) like a filter
 - Reflections from ch1 port flow back through it and contribute to b1 as an error - 'Ch1 mismatch'

Calibration

- Calibration is needed to achieve good results
 - Most devices come with a 'cal' kit
 - Open, short, load and through cable
 - Calibrate every time you change frequencies
- Easy to do just follow one of many good guides [3]
 - Also only accurate at the physical plane measured
- BUT
 - It is important to verify the cal periodically
 - Particularly as early nVNAs are subject to drift

How Calibration Works

- A visual analogy no maths
 - Not mathematically rigorous
 - But hopefully understandable
- The measurements are via couplers, detectors etc
 - Like seeing through flawed glass
 - These all introduce systematic errors
 - If the device under test is a picture
 - The measurement is blurred by the glass

Device Under Test

Measurement

@theRSGB

theRSGB

🕨 YouTube

How Cal Works - Reflection

- To account for the blur
 - Measure some known images
- Calculate the effect of the blur
 - So that it can be subtracted

f theRSGB

@theRSGB

The Calibration Correction

- The calibration is a set of numbers:
 - Magnitudes and phases representing the blur
 - One set for every frequency point measured
 - The blur also has a frequency response
- BUT more importantly, there is physical length involved
 - So every frequency has a different phase shift
 - Greater shifts for longer lengths and higher frequencies
- Imagine the blur distortion is also rotating as the frequency steps
 - Repeatability requires freq. accuracy between cal and test

Calibration - Effects of Phase

1) After cal, remeasure the load

- Looks great S11 = 50Ω RL > 65 dB NOT real, just noise, essentially (x – x) = 0
 2) Measure the load at end of cal cable
- S11 phase rotated, no visible change
- RL lower, going from 50 dB to 30 dB
 - Observing the cable phase shift
 - Same load as 1) so same magnitude
 - But the phase is different changes the
 - Phase error increases with frequency

@theRSGB

theRSGB

YouTube

How Cal Works - Transmission

- Transmission goes through DUT and on to Ch1 port
 - Like shining light through the blurred glass
 - Calibration measures the Ch1 port as a load
 - Then subtracts those values BUT
- S11 cal cannot take into account the mismatch error
 - Error from 'light' reflecting back from Ch1 through the DUT
 - You can see this by looking at S11 after calibration

Calibration Verification

- Good practice to check the calibration
 - Initially in case of some error, but also periodically
 - Early version nVNAs are prone to drift
- Do <u>not</u> re-measure one of the standards
 - That just confirms the maths need a different device
- Measure some other device good candidates
 - A known attenuator (pad)
 - Cal Load on the end of the cable

Additions to Your Purchase

- nVNA usually includes an SMA cable
 - Some even have two
- Also SMA cal standards
 - Open, short and fixed load
- Useful additions not expensive
 - An SMA male to female (connector saver)
 - You only need one beware of 'reverse SMA'
 - A 6 dB SMA attenuator (aka pad)

Tips for a Good Cal

- Calibrate S11 close to the Ch0 connector
 - Add a connector saver to protect the nVNA connector
 - Adds length but not much and worthwhile
- Calibrate S21 via a 6 dB pad
 - At the DUT end of the cable
 - Provides 12 dB return loss at the DUT output
 - It costs 6 dB in dynamic range but again worthwhile

theRSGB

- Validate the calibration
 - Measure the short via the 6 dB pad
 - Repeating periodically to observe any drift

YouTube

@theRSGB

Calibration Verification

- Calibrate with connector saver and 6 dB pad
 - Measure a 3 dB pad showing S11 an S21
 - Flat freq response, expected loss ~ 3 dB and good S11 >40 dB

mag(S11)

0.0

-3.0

-6.0

-9.0

-12.0

@theRSGB

theRSGB

Flat response³⁰

mag(S21)

0.0-

-6.0-

-9.0

-12.0-

- Watch out for:
 - Changes in the 2.8 value
 - Magnitude error/drift
 - Loops in S11 or S21 ripples
 - Resonances
 - Deviations from expected freq response is in the provided in the provided in the provided is the provided is

YouTube

Transient Protection

- It is possible to damage the S11 port with DC
 - I know through first hand experience
- There is a DC blocking capacitor on the port
 - So a steady DC voltage is not a problem
 - [–] But a short enough transient will get through the capacitor
- Solution a bidirectional transient suppression device
 - Fits nicely between SMA inner and ground
 - Inside the box, access under the screening can
- Advice only not a fool proof guarantee

Transient Protection Recommendation

- The key parameters are:
 - low capacitance (<1pF) look for very low power devices
 - low trigger voltage (<5V) working voltage ~1.5V lower
- One recommendation [4] ESD101B102ELE6327XTMA1
 - But challenging to fit very small package (0.3 x 0.6 mm)
 - Solder pads on the bottom inaccessible for hand soldering
- Alternative DBLC03CI-7 (1.3 x 1.7 mm) [5]
 - [–] Big enough to fit between existing PCB pads

[–] Typical values 0.7 pF, 4-7 V trigger and 0.7nS turn on

@theRSGB

🕨 YouTube

theRSGB

Basic Measurements - Reflection

- Antenna simple and effective
 - Can work in the field
 - Connect directly to the coax feed point
- Inductors and Capacitors solve mystery device values
 - Measures at RF frequencies and shows self resonance
 - Great for hand wound RF inductors
 - Weed out useless LF ferrites
 - For SMD capacitors where there are no markings
- Locate feed lines faults

Basic Measurements - Reflection

- Mystery LC values you don't need a fancy test jig
 - A short piece of semi-rigid coax
 - Extend the cal reference using a temporary short
 - Solder device to the ends and measure
 - Measure the unloaded Q of devices [6]
- Feed line Faults e.g. a broken connector connection
 - With a load and/or short on one end
 - Can usually tell which end is faulty
- Feed line velocity factor
 - Terminate in a short, compare electrical to physical length

Basic Measurements - Reflection

- Measuring a hand wound inductor
- 1 200 MHz sweep
 (a) Temp s/c the arc
 (b) ref extension (475 pS) a dot
- Connect the inductor
 - Display L_Parallel(S11)
 - Markers show inductance vs Freq
 - Gradual reduction in inductance
 - Self resonance at ~ 200 MHz

@theRSGB

YouTube

theRSGB

Basic Measurements - Transmission 7 MHz

theRSGB

- Filters can measure S11 and S21
 - Beware of the 'Ch1 mismatch' error
 - Particularly for low loss passband and high freq. filters
 - [–] Calibrate with a 6 dB pad
- As well as the passband
 - Remember to measure a wide stop band
 - The stop band invariably turns upwards at some point

Basic Measurements - Transmission

- Amplifiers
 - Usually uni-directional, so less problem with 'Ch1 mismatch'
 - But have gain, so the output can saturate the S21 detector
 - Adding a pad at the output can help
- Mixers are very tricky and not recommended
 - More expensive VNAs often have this as an added feature
 - Problems: LO leakage, the opposite sideband and more
- You can measure back to back baluns for home brew mixers

Software

- nVNA is a self contained instrument
 - All measurements and results can be made 'in the field'
 - Perfect for antennas for example
- But the screen is small newer versions are better
 - Software can greatly enhance usability 'in the shack'
 - Improves both the display and adds capabilities
- There are various options much is personal choice
 - Nano VNA QT [7] cross platform I run this on a Raspberry Pi
 - Nano VNA Saver cross platform
 - Nano VNA Sharp windows only

Nano VNA QT

- A single executable for Windows, OSX and Linux
 - Simple and uncluttered display
 - Easy to install
- 1) Smith Chart S11
- 2) Line graph various options
- 3) Calibration display
- 4) Impedance/Admittance S11
- 5) Marker control and 6) values
- 7) Marker slider

Software - Extra Capabilities

- Uses computer display
 - Capture screen plots, see different measurements
 - e.g. plots of capacitance/inductance with freq
 - Ease of use e.g. slider controls
- Data capture export csv, s1p or S2p files
 - csv files for more general use, e.g. spreadsheets
 - s?p is a 'Touchstone' file format
 - Can be imported into simulation software, e.g QUCS

Summary

- Nano VNA is remarkable device
 - Exceptional price/performance value
- Calibration is essential to get meaningful measurement
 - I hope I have shed some '*light*' and helped understanding
 - Errors in phase are just as important as magnitude
- Basic measurement examples for reflection and transmission
 - Much more than a VSWR meter or simple LCR meter
- Software like Nano VNA QT can enhance what you can do

Find out more... Thank You for your Attention

- [1] Official web site https://nanorfe.com/
- [2] A battery option https://tinyurl.com/nVNA-battery
- [3] From W2AEW https://tinyurl.com/vna-calibration
- [4] User group discussion https://tinyurl.com/ch0-protection
- [5] Transient suppressor https://tinyurl.com/DBLC03Cl
- [6] Using your VNA to demystify RF filters, Rad Comm April 2022
- [7] https://tinyurl.com/nanoVNA-QT the manual
- [8] http://tinyurl.com/nVNA-Pads 6dB pads www.rsgb.org

