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Summary-A new analysis is given of direct-coupled-resonator
filters that results in excellent response at much greater bandwidths
than has previously been possible. The method relies on the fact
that the coupling elements can be made into perfect impedance in-
verters, or "quarter-wave" transformers, by the addition of negative
elements in lumped-constant circuits, or of short negative lengths of
line in waveguide and transmission-line circuits. Specific design
formulas are given for filters constructed of lumped-constant ele-
ments, waveguide, and strip or other TEM transmission line, and for
pass band response functions of the maximally flat and Tchebycheff
types. The formulas include a simple frequency transformation that
corrects for the frequency sensitivity of the coupling reactances, and
thereby greatly improves the design accuracy for both lumped-
constant and microwave types when the bandwidth is more than a
few per cent. Exact response curves computed from typical filter
designs are compared to the prototype-function response curves, and
it is shown that the design formulas give good results with band-
widths of at least 20 per cent in guide wavelength in the case of
waveguide filters, or 20 per cent in frequency for TEM-mode trans-
mission-line and lumped-constant filters.

INTRODUCTION
N ORDER to achieve a narrow bandwidth in band-
pass filters at high frequencies, it is necessary to
utilize high-Q resonant circuits or cavities coupled

loosely to each other in cascade. Fig. 1 shows lumped-
constant, waveguide, and strip-transmission-line exam-
ples of this coupled-resonator class of filters. The rela-
tive steepness of cutoff increases with the number of
resonators, and therefore methods of synthesizing filters
with any number of resonators to have any desired
physically realizable response are of particular interest.
Considerable work has been done prior to this program
on such methods, and for sufficiently narrow band-
widths adequate design formulas are available [1-11].
However, as the bandwidth is increased above 1 per
cent, the accuracy of most previous design formulas
deteriorates, and therefore a reexamination of the
problem was considered desirable. This has been done
for the case of direct coupling between resonators by
utilizing a different analytical approach than has been
used before, and the resulting design equations are
given in an easy-to-use form in this paper. In the case
of waveguide, strip-line, and other transmission-line
filters of this class, a substantial improvement in design
accuracy is obtained over prior results, and precise de-
signs are now possible for bandwidths of at least 20 per
cent in guide wavelength in the case of waveguide filters,
or 20 per cent in frequency for the TEM-mode trans-
mission-line filters. The design equations for the lumped-
constant circuits of Fig. 1 are included for complete-

* Original manuscript received by the IRE, June 22, 1956; revised
manuscript received, October 15, 1956. The work described in this
paper was supported by the Signal Corps under Contract No. DA
36-039SC-63232.

t Stanford Res. Inst., Menlo Park, Calif.

(a) LUMPED CONSTANTS,SERIES CAPACITIVE COUPLING

(b) LUMPED CONSTANTS, MUTUAL INDUCTIVE COUPLING

(c) LUMPED CONSTANTS ,SHUNT INDUCTIVE COUPLING

t;|;;. .. I I I I I
I I.1 1.1I - LOAD

(d) WAVEGUIDE

GEN.- ? - II - - LOAD

(e)STRIP TRANSMISSION LINE

Fig. 1-Direct-coupled-resonator filters of various constructions.

ness, and because they are in a form particularly con-
venient for design application. In addition, the formulas
include a simple frequency transformation that corrects
for the frequency sensitivity of the coupling reactances
(which have been previously assumed to be constant),
and thereby greatly improves the design accuracy for
both lumped-constant and microwave types when the
bandwidth is more than a few per cent.
The work described in this paper on direct-coupled-

resonator filters began originally as a survey of design
methods for narrow-band waveguide filters. Such
filters have been constructed in two ways. In one, wave-
guide cavities are formed by inductive irises spaced ap-

proximately a half-wavelength apart, the individual
cavities being coupled to each other through quarter-
wavelength waveguide transformers. In the other,
adjacent cavities are coupled directly to each other by
single irises. The quarter-wave-coupled type permits
tuning of the individual cavities before assembly, and
the iris dimensions are relatively noncritical. On the
other hand, the direct-coupled type is much more com-
pact, has fewer parts, and is capable of successful opera-
tion over a greater bandwidth. Recent advances in
alignment procedures [5] and iris design have largely
eliminated the disadvantages of direct-coupled-cavity
filters, and therefore it is believed that their use will
predominate in the future.
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In the case of quarter-wave-coupled waveguide-
cavity filters, Mumford's design method is a convenient
one and sufficiently accurate for bandwidths up to a few
per cent [2]. His formulas are based on a lumped-con-
stant filter prototype having the maximally flat re-
sponse, but they may be extended easily to apply to
other responses, such as the Tchebycheff equal-ripple
response. However, a study of the literature on direct-
coupled waveguide filters has revealed three published
design methods [3, 8, 9], each of which gives different
results from the others. In order to evaluate these
methods, and to determine the extent of the approxi-
mations involved, a fourth approach mentioned above
has been used. The result is a still different set of
design relationships. This new analysis is given in this
paper and its accuracy is compared with the other three.
For extremely narrow bandwidths, all of the methods
are good, but for bandwidths exceeding approximately
1 per cent the new method is the most precise, and it
may be applied successfully to far greater bandwidths.
The analysis in this paper relies on the fact that the

coupling elements can be made into perfect impedance
inverters, or "quarter-wave" transformers, by the addi-
tion of negative elements in lumped-constant circuits,
or of short negative lengths of line in waveguide and
transmission-line circuits. These elements or line lengths
may then be absorbed into the resonators. In this man-
ner an exact design is achieved in the neighborhood of
resonance. Because the "quarter-wave" quality of the
impedance inverters is a broad-band one, good accuracy
is maintained over a wide range. However, the variation
of the coupling reactances, or susceptances, with fre-
quency causes the response of the filter to be unsym-
metrical, although a close approximation of this effect
may be taken into account by means of the frequency-
transformation formulas given in this paper.

DESIGN FORMULAS
Low-Pass Prototype
The design formulas for the various types of direct-

coupled-resonator filters considered in this paper are
based on the low-pass filter prototype shown in Fig. 2.
General formulas are given in the figure for the element
values that will yield either the maximally flat or the
Tchebycheff (equal ripple) insertion-loss response [12,
13]. For convenience, the following conditions are
assumed: 1) the pass band edge occurs at co'= 1 (i.e., at
f' = 1/27r), 2) the left-hand load resistance is one ohm, and
3) the first element, gl is a shunt capacitance. Thus the
elements of odd order gi, g3, g5, * * , are shunt capaci-
tances, and their values given by the formulas are in
farads, while the elements of even order g2, g4, g6,
are series inductances, and are given in henries. The last
element, gn, is a shunt capacitance if n is odd, and a
series inductance if n is even. Inspection of the formulas
shows that the right-hand resistance, r, is one ohm for
all cases considered, except that of Tchebycheff re-
sponse with n even. Also, with the exception of that
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Fig. 2-Prototype low-pass filter and its design equations
for maximally flat and Tchebycheff response.

case, the set of element values gl, g2, g3, * . , gn is sym-
metrical. All needed quantities are defined in the formu-
las or response curves of the figure. The insertion-loss
functions are also given in Fig. 2 for both maximally flat
and Tchebycheff response.

Lumped-Constant Filter Formulas
Fig. 3 gives the design relationships for lumped-con-

stant coupled-resonant-circuit filters for both capacitive
and inductive coupling. The derivation of the formulas
is outlined later on. The load resistances may have any
value, and may be equal or unequal to each other, as
desired. The resonanit-circuit elemenits Lrk, Crk, may be
selected to have any convenient sizes as long as they are
large enough that the actual inductances and capaci-
tances in the composite filter circuit are all positive. The
formulas for the individual elements utilize the values
gl, g2, g3, * , gn of the low-pass prototype filter, which
are computed from the formulas in Fig. 2 for the par-
ticular insertion-loss response desired.
The insertion-loss curves sketched in Fig. 3 show the

relationships between the band-pass and prototype re-
sponses. The band-pass response is obtained from the
prototype response by transforming the frequency scale
such thatfo of the band-pass filter corresponds tof' O
of the low-pass filter, and the band edges f, and f2 of the
band-pass filter correspond to the band edge fi' of the
prototype. In the design equations, fJ' should be set
equal to 1/2r if it is desired to have the insertion loss at
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the pass-band edge be 3 db in the maximally flat case or
be equal to the ripple level in the Tchebycheff case.
However, an fi' corresponding to any other pass band-
edge insertion loss may be used if desired. The insertion-
loss curves of the band-pass filter and the low-pass
prototype vary in the same manner as a function of
If-fol and f'. For narrow bandwidth, the band-pascs
insertion loss may be computed from the formula for the
low-pass filter by replacing f'/lf' by 2If-fO /(f2-f)..
For bandwidths of more than a few per cent, if one
assumes that the coupling reactances do not vary with
frequency, a better transformation requires that f'/fi'
be replaced by f/fo-fo/f /(f2/fo-fo/f2), where fo is re--
lated to f' and f2 by fo = Vf1f2. However, the coupling
reactances necessarily vary with frequency, and for
bandwidths of more than a few per cent a superior
transformation for the filter circuits of Fig. 3 is to re-
place f'/f,' by:

fo 1 fo __ 1

flt f 2- fo f2 fo
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f ~~~~~f21
where fo is now related to fi and f2 by
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For constant coupling reactance, the proper formula for
w' in Fig. 3 would be w' (f2-fi)/f1'. However, a close
approximation of the effect of reactance variation with
frequency is obtained when the following relationship
for w' is used:
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In order to evaluate the accuracy of the design formu-
las for a moderately wide bandwidth, a six-resonant-
circuit lumped-constant filter was designed and its
exact response computed. The result is compared to the
prototype function in Fig. 4. The response was designed
to be maximally flat with 3-db points CtW2 and w1 in the
ratio 1.20: 1. The agreement between the curves is seen

to be very good, despite the fact that the response is
highly unsymmetrical on a linear frequency scale.

fo fl + f2 [(f2 fl)2 + f1f2] Wavequide Filter Formulas

WI' = ( o -°)(-

For f21fr < 0.05:

f 2 -

r 1

(b)

Fig. 3-(a)Design formulas for capacitive-coupled lumped-constant
filter. (b) Design formulas for inductive-coupled lumped-constant
filter.

Fig. 5 gives the formulas for direct-coupled waveguide
filters. The electrical lengths, q5, of the cavities and the
normalized inductive reactances, Xi,i+1, of the irises are

computed in terms of the prototype elements gi, g2,

g3, * * *, and the desired guide-wavelength pass band
limits 'X1 and X,2. As in the case of the lumped-constant
filters, the formulas take into account the variation of
the inductive coupling reactances with frequency. The
iris reactance is assumed to vary in inverse proportion
to guide wavelength (this is an excellent approximation
for inductive windows or apertures in thin walls and for
inductive posts [14]). If the coupling reactances were
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Fig. 5-Formulas for inductive-iris-coupled waveguide filters.

independent of frequency, the response of the filter
would be expected theoretically to be symmetrical on a

1/Xg scale. However, the guide-wavelength dependence
of the coupling reactances has the very interesting
effect of making the filter response symmetrical on a X

scale. The predicted insertion-loss response may be
computed from the formulas given in Fig. 2 for the low-
pass prototype by substituting

"'' 2 (-2 (4)
WI X' -Xg22

As in tIAe lumped-constant case, wl' should be set equal
to unityv if the pass band-edge insertion loss is desired to
be 3 db for maximally flat response or to be the equal-
ripple level for Tchebycheff response. Otherwise, co,'
should be given the value that corresponds to the de-
sired edge insertion loss in the low-pass prototype func-
tion.
The formulas of Fig. 5 differ from other formulas for

direct-coupled filters in a number of important respects.
First, all other published design formulas are based on
frequency-independent coupling reactances, which are
physically unrealizable. For bandwidths of more than a
few per cent, this leads to errors in the pass band limits
and in the steepness of cutoff. Aside from this, South-
worth's formula [8] for Xi,i+j differs from that of Fig. 5.
If the denominator (1 -L2/g,g,+i) of the relation for
Xj,j+1 in Fig. 5 is replaced by unity, the result is equiv-
alent to Southworth's. However, the omission of the
term L2/gig,+1 leads to appreciable error in a design for
even a 1 per cent bandwidth, although for extremely
narrow bandwidths the discrepancy becomes negligible.
Fano and Lawson's analysis [3] has been found to con-
tain typographical errors. When the errors are corrected,
the result is the same as Southworth's, except for a minor
difference in the formula for +i. Riblet's formulas [9]
are in a completely different form from those of Fig. 5,
and hence a direct comparison cannot be made.

Fig. 6 shows a comparison of the exact vswr of
filters designed by various methods to have the same
bandwidthand thesame response function. Perfect agree-
ment occurs between the maximally flat prototype func-
tion and the design of this paper for the assumed band-
width of 3 per cent. Equally good agreement was ob-
tained on an insertion-loss scale up to at least 50 db
[Fig. 6]. Although Southworth's design deviates
considerably from the prototype function at low vswr
values, on an insertion-loss scale it would appear to
agree much better. Riblet's design method gives its best
results at low vswr's in the example of Fig. 6. At the
3-db points the bandwidth error is about 8 per cent. For
greater bandwidths the error in design would increase.
The vswr and insertion loss of a six-cavity waveguide

filter designed by the new method for Tchebyscheff
response is shown in Fig. 7. The agreement between the
exact computed response and the prototype function is
excellent for the design bandwidth of 2 per cent.
The new method was also tested for moderately wide

bandwidths. The results for a six-cavity filter designed
for maximally flat response and bandwidth of about 20
per cent are shown in Fig. 8, and for Tchebycheff re-
sponse and bandwidth of about 10 per cent in Fig. 9.
In both cases the agreement is good, although minor
deviations from the prototype functions are observed.
The pass band vswr, which gives the most exacting test,
shows the most discrepancy, but the maximum pass
band vswr is very low and is certainly suitable for most

I
practical applications. The dissymmetry of these re-
sponses caused by frequency variation of the coupling
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reactances is quite large, but is compensated for very

well by the frequency-scale transformation that was
introduced into the design formulas.

Strip-Line Filter Formulas
Strip-line direct-coupled filters can be made conven-

iently with either series-capacitive or shunt-inductive
coupling between resonant line lengths. The formulas of
Fig. 5 for waveguide filters apply in the case of inductive
coupling if free-space wavelength X is substituted every-
where for guide wavelength X. The shunt inductances

\3 might consist of metal posts or strips joining the strip
line to the two ground planes. However, a usually more

2rave- convenient construction method uses capacitive cou-2per pling, where gaps in the strip line form the series capaci-
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tances. The filter layout and design formtulas are shown
in Fig. 10. The filter circuit is the dual of the circuit
containing inductive coupling elements, and the for-
mulas were written directly from Fig. 5 by means of the
usual duality relationships, and the substitution of free-
space wavelength for guide wavelength.

}1-l -|-02 -|-t- -|1 b-

-D ll-- 11 .1-~rI
80 B12 B23B33 B01 Bn. n+l
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i, a+l2
1 -

5it i+1
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rfl = c;/277 ri r2
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=180°- [t2an (2B1 i) + tan (2B .

B+ = normalized gap susceptance at

- phase length at

2flf2
'° f + r2

- prototype elements in farads and henries from Fig. 2.

go C} tn+j = r

r = right-hand load resistance in Fig. 2.

1= pass-band edge of prototype filter

ri f2 = corresponding pass-band edges of transmission-line filter

Fig. 10-Formulas for capacitive-gap-coupled transmission-line filter.

The calculation of the coupling values and line lengths
in terms of the low-pass prototype elements is done the
same way as for the waveguide filter. The gap dimen-
sions to yield the required series capacitances may be
obtained from experimental curves or a theoretical for-
mula to be found in several references [10, 11, 15, 16].
If the gap is small compared to the ground-plane spacing
the resonant line lengths should be measured from the
center of the gap. The line-length error in this procedure
is proportional to the square of the ratio of gap to
ground-plane spacing, and is usually negligible. How-
ever a line length correction for the presence of the gap
may be made from available formulas and data [15, 16].
The theoretical response curves of Figs. 6 to 9 apply

exactly to strip-line direct-coupled filters if guide wave-
length is replaced by free-space wavelength. Thus, as in
the waveguide case, the response of either series-
capacitive or shunt-inductive coupled strip-line filters
is symmetrical on a wavelength scale rather than on a
frequency scale. Therefore, to compute the insertion-
loss response from that of the low-pass prototype given
in Fig. 2, one should use (4) with X replacing 4,

DERIVATION OF FORMULAS

Basic Transformations Applicable to All Types

Fig. 11(a) shows the lumped-constant prototype and
Fig. 11 (b) the inverse-arm band-pass filter derived from
it by the frequency transformation: co' oc (colwo-coolo,). In
both cases the first arm is taken always to be a shunt
arm. Impedance inverting transformers' are next in-
serted between the successive arms of the filter to obtain
the circuit of Fig. 11(c), in which all resonanit arms are
series arms. The impedance-inversion property that
makes this last transformation possible may be ex-
pressed simply by the well-known relatiolnships for a
quarter wavelength of transmission line: Z- K2 Y2 and

42 t4 , I

1 ¶j§jj 73jril
n odd

( a)

ni odd

r

'0 even

L5 C5

L even

_
n even

col§ A ~~~~~f2 f l
k L ii

, /ikodd - k even

C _ ci= f oiik &k r WvW-1r
(f1 and f2 correspond to co' of prototype response)

(b)

L,1 C,1 Lr2 C¾2 Lrn Crn

'Ko1 K12 K~23K +

±900I ±900 +900 ±900

(c)

Fig. 11-Transformations from low-pass prototype to band-pass
filter containing quarter-wave inverters.

Y, = Z2/K2, where K is the characteristic impedance (or
image impedance) of the quarter-wave line (inverter),
the subscript "2" denotes load impedance or admittance
connected to the inverter, and the subscript "1," input
impedance or admittance. Thus, for example, a shulnt
capacitance C viewed through the inverter appears to
be a series inductance of value L-K2C, while a series
inductance L appears to be a shunt capacitance of value
C=L/K2. The detailed steps using this concept are car-
ried out below and lead to the desired relationships
between the elements Lk, Ck in Fig. 11(b) and L,k, Crk
in Fig. 11(c).

I Impedance inverters have had frequent uise in network trans-
formation. For example, see [1] and [151.
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Consider the portion of tile inverse-arm band-pass
circuit shown in Fig. 12(a). The elements L2 and C2 al-
ready constitute a series arm as desired, but at an im-
proper impedance level. This may be corrected as indi-
cated in Fig. 12(b) by multiplying all inductances in the
filter (and the load resistances) by L,2/L2, and all capaci-
tances by L2/Lr2. Next, an inversion network is intro-
duced in Fig. 12(c) to transform the shunt arm of Fig.
12(b) into a series arm. In order for the performance of
the filter to be the same in both cases, Y3 in Fig. 12(b)
and (c) must be identical. Hence it is necessary that

1 \L2
jQ,C3- + 4

=KL32Lr2

K2 2j(or - - +r 4}

L2 C2

L3 C3

/ (a)
L r2 C,2 L r3 C3

K23 F--

Y3-90.*Z

(c)

1
RI

(e)

L.2 C.2

1 3 (L21L 2)C3 -*Y6

(L,2/L2)L3 (b)

(d)

L,l C'1

(f)

Fig. 12 Detailed transformations used in analysis.

After identifying the quantities that have the same de-
pendence on co, one may write

1
Lr2Cr2 = Lr3Cr3 = -

CO02
K23== y

L23

Similarly, the last inversion network is given by

/ Wow LrnRnr
Kn,n+l= VC/ g

(C1 gn
(7)

for n odd or even.

Impedance-Inversion Networks
A number of networks that have the inversion proper-

ties of a quarter-wave transformer over a broad band-
width are shown in Fig. 13. The characteristic imped-
ance, K, and phase shift, 3, of each network may be
derived in various ways. For example, in Fig. 13(a) the
short- and open-circuit input impedances of half the
network are Zc = -j/lwC, Z,,C =jj/C, and through the
use of well-known relationships

K = I/ZS Z0o = -
coC

= 2 tan- + 900
Iz c

c - c - c

C~~~~ -~~ -I-
,~~~~~~~~_

K = 1/w C K = 1/w C
(a) (b)

I X

K = IZ. tan (,/2)

jb = - tan (2X/Z.)
K/Z

1 - (KIZ)
(e)

L - L - L

e-, L - L 0 L

K =wL K = oL
(c) (d)

r ¢,
y In

I Y,
K - IZ cot (fr2)1

= - tan (2B1Y)

K/Z,

(KI/Z) - 1

(f)

Fig. 13-Broad-band impedance-inversion networks.

With the aid of the relations in Fig. 11(b), we may
write, in general for arms k and k+1,

CKOW L,kLrk+l
Kk, k+l = 4/

CO II gkgk+l

1

LrkCrk = -

co2

The first and last K in the filter may be computed in
a similar manner. Thus, Fig. 12(d) shows the input load
resistance and first shunt arm of the inverse-arm band-
pass filter. In Fig. 12(e), the impedance level has been
changed from one ohm to R1 ohms. In Fig. 12(f), an in-
version network is introduced to transform the shunt
arm to a series arm. In order for YV to be the same in
Fig. 12(e) and (f), Ko1 must be chosen so that

VL 1
/ow L,,Rl

I/ . -1@1 g

For the network of Fig. 13(a) the negative sign for (3 is
correct, but in this application the particular sign is un-
important. The important point to notice is that ,B is
not frequency dependent, and hence the impedance-
inversion property of Fig. 13(a), and also of Fig. 13(b),
(c), and (d), holds at all frequencies, while the character-
istic impedance has the same variation with frequency
as does the kind of reactance in the network. The most
suitable inversion network to choose for a given filter is
one whose negative elements can be absorbed into the
resonant circuits so that all element values of the com-
posite filter are positive.
Networks in TEM transmission line and waveguide

may also be devised that provide impedance inversion
over very wide bandwidths. Cases utilizing a shunt in-
ductive reactance and a series capacitive reactance ap-
pear in Fig. 13(e) and (f). For example, in the case of the
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shunt inductive reactance, X--wL, negative electrical
lengths of line are required on each side of the reactance.
The formulas in the figure may be derived coniveniently
from the short- and open-circuit impedanices of half the
structure:

filter sclhematic of Fig. 11(c) shows that the lasi; half-
wave-line equivalent may be used as the resonators, and
the shunt reactance and associated negative line length
of Fig. 13(e) may serve as the inversion networks. First,
however, an expression for LA1 in terms of waveguide
parameters must be obtainied.

(8)
(a)

X = Z sinmq

= --fCot V/2
1: -1

(b)| ZO tan {- + tan-1
2

}

2~~~~~~~~~~~~~~ 0

K = ZoI- tan(±) tan -+ tan-l ( )]

If we set d3a= -90°, it is necessary at wo that

(2cvoL)
= -tan-1 2) and K = Zo tan- (10)

zo ~~~~~~2

The numerator and denominator of (8) are both almost
exactly proportional to 4, and this causes the frequency
variation of A from -90° to be slight enough to be
neglected. Also, K is very closely proportional to 4.

For use in design work, a formula for X-cwoL in
terms of K is needed. This is obtained as follows with
the aid of a trigonometric identity.

X 1 1 K\
= tan (-) =-tan 2 tan-

zo 2 2

K/Zo
1 - (K/Zo)2

Equivalent Circuit of a Half- Wavelength Resonator

In the case of TEM-transmission-line or waveguide
direct-coupled filters, the equivalent circuit of a half-
wavelength of line is required. This is given exactly in
Fig. 14(b). The three reactive elements provide the fre-
quency dependence of the circuit, while the ideal trans-
former provides the phase reversal of a half-wave line.
Since this reversal plays no part in the filter perform-
ance, it is neglected in the approximate equivalent cir-
cuit of Fig. 14(c).
When the half-wave resonators are used in a wave-

guide filter, the shunt arms of Fig. 14(c) are connected
almost directly in parallel with the large shunt suscept-
ances of the inversion networks. In Fig. 14(b), it is seen
that B! Yo is much less than unity even for moderately
wide bandwidths, while the normalized susceptance of
the coupling irises is much larger than unity. Hence the
shunt arms may be neglected as in Fig. 14(b), where
only the series-resonant arm remains. Reference to the

Fig. 14 Equivalent circuit of half-wavelength resonator.

Fig. 14(b) gives the reactance of the series arm as

X Zo sin 4. In the vicinity of 0- r, this may be
written

X = Zo( -ir) 7rZo (.i -1). (12)

In terms of the equivalent-circuit elements,

1

X = WLrt- -*
CoCr

(13)

A relationship between Lr and Xg is most easily obtained
by equating dX/dwl,=,O, computed from (12), to the
same quantity from (13). Thus,

dX do
= 2Lr = ZO-

d,wW=()0 dco Wo-CO

and therefore

iiZo /Xgo Xg\
Lr =

2wo,w \X 2 X01/
(14)

where w- (W2-Cl)/lwO andO = (col+W2)/2. A combina-
tion of (5), (6), (7), and (14) then gives

Kk,k+l Le

Zo Vg\gkgk+l

where, for convenience,

ir /Xgo X1O\
L 2=- -

2X1' X g2' Xgi'J

(15)

(16)

, = 2 tan-1 +

- 2 tan'l +

V7.i_/ xsc
/ /

0
-Zo tan

2

L, Cr
t ~ ~~~--O

(9)
C>-- - z

(c) (d)
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L
go =L, gn+l =-a R1 = Rn = Z° (17)

r

-=
eO 2 txgl

+ (18)

The prime marks placed on Xg1' and Xg2' indicate that
these are the pass band limits when the inversion-
network characteristic impedances Kk,k+i are assumed
to be constant with frequency. However, Kk,k+l varies
with frequency, causing the filter response to be an un-
symmetrical function of X0g/X,, and therefore the un-
primed quantities Xgl and X2 will henceforth be reserved
for the true pass band limits. A simple relationship be-
tween X,' and \g will now be obtained.

Frequency-Scale Correction for Waveguide Filter
The bandwidth of a multiple-resonator direct-coupled

filter is dependent mainly upon the size of the internal
coupling elements, and only slightly upon the input and
output coupling elements. Eqs. (15) and (16) show that
the relative bandwidth expressed in reciprocal guide
wavelength is proportional to K/Zo of the internal in-
verting networks, while (11) shows that K/Zo is ap-
proximately proportional to X/Z0. A shunt inductive
iris or post in waveguide has a reactance variation very
nearly proportional to Xg0/Xg. Hence, to a good approxi-
mation, X0g/Xg -1 oc K/Zo oc X,o/Xg. For very narrow band-
widths, X,'-*Xg, and this permits the proportionality
relationship to be completed as follows:

go Ago Xgo
(-- I = (, - )- (19)

TIhrough the use of (18) and (19), X0g is related to the
pass band limits by XO = (X,1+Xg2)/2. When this is sub-
stituted in (16), the formula for L given in Fig. 5 results.
Upon joining the series of half-wave lines and in-

version structures, the electrical length of each resona-
tor is 180° plus the 0/2 lengths associated with the
adjoining coupling reactances. With the aid of (10), the
electrical length of the ith resonator at coo is as given in
Fig. 5.
Thus the various design equations of Fig. 5 for the

waveguide direct-coupled filter have been verified. Also,
Fig. 10 for the capacitive-gap-coupled transmission-
line filter is seen to be verified when it is considered that
Xg in the waveguide filter formulas should be replaced
by X, and that this circuit is the dual of the waveguide
circuit.

Lumped-Constant Filter Design
The resonant elements L7, Cr in the first circuit of

Fig. 3(b) are in series resonant arms. Therefore, the
discussion pertaining to Fig. 11 applies, and the
nversion-network characteristic impedances are given
y (6). The most suitable inversion network is that of

Fig. 13(d), since its negative inductance elenments mrai;y
be subtracted from L,. However, this cannot be don.e
with the first and last inversion network of the filter,
since a negative inductance would be required at h,e
input and output of the filter. This has been avoicled
by making Lo-Mo1>0 and by choosing the value of
Mo, such that the proper load resistance R' (Fig. 15)
will be inserted in series with the first resonant circuit.
The equivalent series-inductance component Mol' then
becomes a part of the resonant circuit, as indicated in
Fig. 3(b)

Lo-No 1

R1f X~Nol _ + iw#Ol

Fig. 15-Equivalent load impedance of inductive-
coupled lumped-constant filter.

The capacitance-coupled lumped-constant filter of
Fig. 3(a) is the dual of the circuit of Fig. 3(b) (if
Lo= MolI ), and the formulas for one case may be ob-
tained readily from those of the other. It will be noticed
that the formulas for C0o and Mo1 have a somewhat dif-
ferent appearance, but this difference disappears when
LO-I Mo = 0, and the equation giving Mo, is solved
explicitly for Mol. However, when mutual inductance
is used in a filter design, a primary inductance Lo> MO,
must be provided, and the spacing to the secondary
should then be adjusted to yield the necessary value of
Mol.
The frequency-scale correction for the lumped-

constant filter to allow for the frequency dependence of
the inversion-network characteristic impedance is de-
rived in the same way as for the waveguide filter. The
resulting frequency relationships are given in (1), (2),
and (3).

Generalized Case of Coupled Resonators-Coupling
Coefficient

In the analysis of lumped-constant coupled-resonant-
circuit filters, it has been customary to define a coupling
coefficient k between adjacent resonant circuits. For
narrow bandwidth, the coupling coefficient between
resonators i and i+1 is related to the pass band fre-
quencies and prototype elements by

I'2g-(fl
kj,i+l =1

C0J'-\1gigi+l fo

This parameter is also useful in the design of narrow-
band filters containing resonant cavities of any shape.
The coupling element (aperture, loop, probe, etc.) to
yield the desired value of coupling coefficient may be
determined by calculation or by an experimental
method given by Dishal [5 ].
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Distributed-Parameter Variable Delay Lines Using
Skewed Turns for Delay Equalization*

F. D. LEWISt, SENIOR MEMBER, IRE, AND R. M. FRAZIERT, MEMBER, IRE

Summary-Delay equalization of distributed-parameter delay
lines is accomplished by a new method making use of skewed turns
in the winding. A simple analysis of the basis for the use of this
method of equalization is given, and the performance of experi-
mental variable delay lines is discussed.

A brief survey of the artificial-line delay-equalization problem is
given with a discussion of some of the alternative methods of solving
the problem.

INTRODUCTION
flf HE REALIZATION of continuously variable

electromagnetic delay lines providing adequate
bandwidth with constant time delay requires the

adoption of certain design features which combine to
make the task difficult. The requirement for continuous
variation instead of step-wise adjustment means that
the variable delay line is preferably made as a continu-
ously wound distributed-parameter line with a sliding
tap. In the continuous type of winding, it becomes diffi-
cult to introduce compensating network sections unless
they can be put in as distributed elements. Also, single-
layer constant-pitch coils wound with commonly used
sizes of wire and form dimensions possess distributed
constants which provide approximate self-compensation

* Original manuscript received by the IRE, June 4, 1956.
t General Radio Co., Cambridge, Mass.
$ Philco Corp., Philadelphia, Pa.

of time delay vs frequency only in the relatively high
impedance range, or when the time delay per uI1it
length of the line is very low. It is the purpose of this
paper to describe a new method of delay equalization
making use of a skewed winding to obtain a constant
time delay vs frequency. This compensation method
offers several important advantages, including the abil-
ity to provide delay equalization for characteristic im-
pedances down to 150 ohms, or lower, without introduc-
ing wavelength-sensitive discontinuities. In Fig. 1, the
pulse and step responses of a 1-,usec delay line using this
new method of compensation are shown compared to
the responses of an equivalent line without compensa-
tion. A simple analysis of the basis for using this method
of compensation shows that the method is theoretically
valid, and that the measured characteristics agree
qualitatively with the results predicted by the analysis.

DELAY VARIATION WITH RESPECT TO
FREQUENCY IN ARTIFICIAL LINES

Review of Delay Equalization Problem
Much engineering effort has been expended on the

design of delay networks for various purposes. Lumped
parameter pulse-forming networks are representativer
specialized types of delay networks wherein the del-
time is arranged to be constant at the required freque
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