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An Economical  Class of Digital  Filters for Decimation 
and  Interpolation 

Abstruct-A class of digital hear  phase fiiite impulse  response (FIR) 
filters  for  decimation  (sampling  rate  decrease) and interpolation (sam- 
pling  rate  increase)  are  presented.  They  require no multipliers and  use 
limited  storage  making  them  an  economical  alternative to conventional 
implementations  for  certain  applications. 

A digital  fiiter  in  this  class  consists of cascaded  ideal  integrator  stages 
operating at a  high  sampling  rate  and  an  equal  number of  comb stages 
operating at a low sampling rate.  Together,  a  single  integrator-comb 
pair produces  a  uniform FIR. The  number of cascaded  integrator- 
comb pairs is chosen to meet  design  requirements  for  aliasing  or  imaging 
error. 

Design  procedures  and  examples  are  given  for both decimation and 
interpolation  filters  with  the  emphasis on frequency  response  and  regis- 
ter width. 

I.  INTRODUCTION 

I N recent  literature,  Crochiere  and  Rabiner [ l ]  -[3] have 
presented  a general theory  for  FIR  multistage  decimators 

and  interpolators  with  emphasis  on  optimal designs in terms  of 
minimizing  the  number of multiplications per second  or  the 
required  amount of storage.  Goodman  and  Carey [4] have 
taken  the  approach  that  a careful  choice  of  filter  coefficients 
for  half-band  decimators  and  interpolators  can  lead to efficient 
hardware designs. 

In  the field  of  efficient  digital  filters, Peled and Liu [SI have 
introduced  the  “coefficient slicing” approach to filter  design. 
For  these filte,rs, multipliers are replaced with  adders  and ROM 
look-up tables.  This  approach can be applied  profitably to 
decimator  and  interpolator designs. 

The  essential function  of  a  decimation  or  interpolation filter 
is to  decrease  or increase the sampling rate  and to keep  the 
passband aliasing or imaging error  within  prescribed  bounds. 
In this  paper,  a class of  linear phase FIR filters for  decimation 
and  interpolation  that fulfill  this basic requirement  are  intro- 
duced.  The  filters  require  no  multipliers  and use limited  stor- 
age thereby  leading to more  economical  hardware  implemen- 
tations.  They are designated cascaded integrator-comb (CIC) 
filters because their  structure consists  of an integrator  section 
operating  at  the  high  sampling  rate  and a comb  section  oper- 
ating  at  the  low  sampling  rate. 

Using  CIC filters, the  amount  of  passband aliasing or imaging 
error can be brought  within  prescribed  bounds  by  increasing 
the  number of stages in  the  filter.  However, the  width  of  the 
passband and  the  frequency  characteristics  outside  the pass- 
band are severely limited.  For  critical  applications  these 
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limitations can be overcome by using CIC filters to make  the 
transition  between high and  low  sampling  rates,  and to use 
conventional  filters  at  the  low  sampling  rate to “shape”  or 
“clean-up”  the  frequency  response.  In this manner, CIC filters 
are used at high sampling  rates  where  economy is critical,  and 
conventional  filters  are used at  low  sampling  rates  where  the 
number  of  multiplies per second is low. 

Like CIC filters,  some  of the filters  described  in  [4]  do  not 
require  multipliers;  however,  these  filters are restricted to  a 
rate change factor of two,  and have limited  attenuation in the 
aliasing/imaging bands. 

The  next  section  describes CIC filters in terms  of  their  func- 
tional  building  blocks,  relating  their  z-transforms to  the 
z-transform  of  the  composite  filter.,  Section I11 discusses the 
frequency  response  of CIC filters giving an approximation  that 
is usable for a wide range of design problems.  Tables are pro- 
vided for  determining  filter  parameters as a  function  of  the 
desired bandwidth  and aliasing/imaging error. 

In  Section  IV, CIC decimation  filters are described  with 
particular attention given to the effects  of truncation  and 
rounding  on  the filter’s error  statistics. Design equations are 
given and are applied to  a specific design problem.  In  Section 
V  a similar treatment is  given for CIC interpolation filters with 
the  major  consideration given to register  growth and its  rela- 
tion to the filter design. 

11. CIC FILTER  DESCRIPTION 
Fig. 1 shows the basic structure of the CIC decimation  filter. 

An analogous  structure  for  the CIC interpolation filter is pre- 
sented in Fig. 2. 

The  integrator  section of CIC filters  consists of Nideal digital 
integrator stages operating  at  the  high  sampling  rate,f,.  Each 
stage is implemented as a  one-pole  filter  with  a  unity  feedback 
coefficient.  The  system function for a single integrator is 

The  comb  section  operates at  the  low sampling rate f JR 
where R is the  integer  rate change factor.  This  section consists 
of N comb stages with  a  differential delay of M samples per 
stage.  The  differential  delay is a filter design parameter used 
to  control  the filter’s frequency  response.  In  practice,  the 
differential  delay is usually held to M =  1 or 2. The  system 
function  for a single comb stage referenced to  the high sam- 
pling rate is 

H&) = 1 - Z-RM. (2 )  
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Fig. 1. CIC decimation  filter. 
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Fig. 2. CIC interpolation  filter. 

There is a  rate change switch  between  the  two  filter  sections. 
For  decimation,  the  switch  subsamples  the  output  of  the  last 
integrator  stage,  reducing  the  sampling  rate  from f, to f ,/R; 
and  for  interpolation,  the switch causes a  rate increase by  a 
factor of R by inserting R - 1 zero valued  samples between 
consecutive samples of  the  comb section output. 

I t  follows from (1) and (2 )  that  the system function  for  the 
composite CIC filter  referenced to the high  sampling rate,&, is 

H(z) = HY(Z)HF(Z) = (1 - z-RM)N R M - 1  

z )  k= 0 
(1 - - 1  N = [ .-.IN. (3) 

It is implicit from  the last  form of the system function  that 
the CIC filter is functionally  equivalent to a cascade ofNuni -  
form  FIRfilter stages. A conventional  implementation  consists 
of  a cascade  of N stages each  requiring Rh storage registers 
and  one  accumulator.  Taking  advantage of the  rate  change 
factor,  one  of  the N stages  can  be simplified to use only M 
storage registers. 

It  must be  stressed that  each  integrator  has  a  unity  feedback 
coefficient;  for CIC decimators  this  results  in register overflow 
in all integrator stages. This is of no consequence if the fol- 
lowing two  conditions are met. 1) The  filter is implemented 
with two’s complement  arithmetic  or  other  number  system 
which allows “wrap-around’’  between the  most positive and 
most negative numbers. 2)  The range  of the  number  system 
is equal to  or exceeds  the  maximum  magnitude  expected  at 
the  output of the  composite  filter.  For CIC interpolators,  the 
data are preconditioned  by  the  comb  section so that overflow 
will not occur  in the  integrator stages. 

The  economics  of CIC filters derive from  the following 
sources: 1) no multipliers  are  required; 2 )  no storage .is required 
for filter  coefficients; 3 )  intermediate  storage is reduced by 
integrating at  the high  sampling  rate  and comb filtering at  the 
low  sampling rate,  compared to  the equivalent  implementation 
using cascaded  uniform FIR filters; 4) the  structure of  CIC 
filters is very  “regular” consisting of two basic building  blocks; 
5) little  external  control  or  complicated  local  timing is re- 

quired; 6) the same  filter design  can easily be  used for a wide 
range  of rate change factors, R,  with  the  addition of a scaling 
circuit  and  minimal changes to  the filter  timing. 

Some  problems  encountered  with CIC filters  include the  fol- 
lowing. 1) Register  widths  can  become large for large rate 
change factors, R. 2 )  The  frequency  response is fully  deter- 
mined  by  only  three  integer  parameters ( R , M ,  and N ) ,  result- 
ing in a  limited range  of filter  characteristics. 

The  application  for CIC filters seems to be in areas  where 
high  sampling  rates  make  multipliers an uneconomical  choice 
and  areas  where large rate change factors  would  require large 
amounts  of  coefficient  storage or fast  impulse response genera- 
tion.  For  example, a  system  has  been  implemented  consisting 
of 32 digital interpolators  operating at  about f ,  = 5 MHz.  Each 
interpolator is built  on a single PC board using the CIC tech- 
nique.  The  filters have a variable rate  change factor  of  up  to 
R = 5 12 implemented  with N = 4 stages and  a  differential 
delay  of M =  2 ,  resulting  in  a stopband  attenuation of 5 3  dB. 
For  the  rate change factor of 5 12, the filter  consists of 4093 
zeros. Although the  number of zeros is large, the  implementa- 
tion is very economical,  consisting  of 7 adders  and 1 1  storage 
registers with no coefficient  storage  or  multipliers. 

111. FREQUENCY CHARACTERISTICS 
CIC filters have a low-pass frequency  characteristic. The  fre- 

quency response is  given by (3) evaluated at 
= , i O ~ f / R )  (4) 

where f is the  frequency relative to the  low sampling rate 
fJR. As part of the filter design process, R ,  M ,  and N are 
chosen to provide acceptable  passband  characteristics over 
the  frequency range from  zero to a  predetermined  cutoff 
frequency f, expressed relative to the  low  sampling  rate.  The 
power response is 

For large rate change factors R ,  the power response  can be 
approximated over a  limited  frequency range by 

A [  sir^;^]'" 1 
P ( f ) =  Rh- forO<f<-- .  

A4 

This  approximation can  be used for  many pra$ical  design 
problems. For  example,  the  error  between P and P is less than 
1 dB  for RM> 10,l  < N <  7 and 0 < f < 255/(256M). 

For  the power  response  of (5) and  (6),nulls  exist at multiples 
of f = l/M. Thus,  the  differential  delay M can be used  as a 
design parameter to control  the  placement of nulls.  For CIC 
decimation  filters,  the region around every Mth null is folded 
into  the passband causing aliasing errors;  for CIC interpolation 
filters, imaging occurs in the regions  around  these  same nulls. 
Specifically,  these aliasing/imaging bands  are 

(i - f,) <f < (i +f,> (7) 

for f < 3 and i = 1 , 2 ,  - - , 1R/2] where [x] is the largest inte- 
ger not greater than x. 
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Fig. 3. Example  frequency  response for N = 4, M = 1, R = 7, and f, = i. 

TABLE I 
PASSBAND ATTENUATION FOR LARGE RATE CHANGE FACTORS 

elative  Bandwidth- 
ifferential  Delay 
roduct Olfc)  i 

1/128 

1/64 

1/32 

1/16 

1/8 

1/4 

Passband.  Attenuation  at fc (BB) 
As a Functlon of 

Number of Staqes i N )  
- 
1 

0.00 

0.00 

0.01 

0.06 

0.22 

0.91 

- 
2 

0.00 

0.01 

0.03 

0.11 

0.45 

1.62 

- 
3 - 

0.00 

0.01 

0.04 

0.17 

0.67 

2.74 
- 

An example  power  response is  given in Fig. 3 for  an N = 4 
stage  CIC filter  with  a  differential  delay of M = 1  and  a  rate 
change factor  of R = 7. The  passband  cutoff is at f, = $ with 
the aliasing/imaging bands  centered  around  the  nulls at fre- 
quencies of 1 , 2 ,  and 3 relative to the  low  sampling rate. 

For practical design problems,  the aliasing/imaging errors 
can be  characterized by  the  maximum  error over all aliasing/ 
imaging bands.  For  a large class of filter design problems 
where f, < 1/2M, this  maximum  occurs  at  the  lower edge of 
the  first aliasing/imaging band  at 

f A I  = 1 - f c .  (8) 

Tables I and I1 are  presented as an aid in determining  the 
tradeoffs  between  bandwidth,  passband  attenuation,  and 
aliasing/imaging error.  It is assumed that  the  rate change factor 
is large, so the  power response  approximation of (6) can  be 
used.  In  these  tables attenuations are calculated  relative to the 
maximum  filter  response  at f = 0. 

The passband attenuations given in Table I are constant  for 
a given relative bandwidth-differential  delay  product (Mf,); 
however,  this is not  the case for  the aliasing/imaging attenu- 
ation given in  Table 11. Here,  two values of  differential  delay, 
M =  1 and 2 are tabulated;  differential  delays  greater  than 
these seem to be  of less  value. 

IV. CIC DECIMATION FILTER DESIGN 
A. Design Overview 

This  section  presents design considerations  for CIC decima- 
tion  filters.  The  most  significant bit (MSB) of  these  filters is 
determined as a function  of  the overall register growth.  This is 

TABLE I1 
ALIASING/IMAGING ATTENUATION FOR LARGE RATE CHANGE FACTORS 

Aliasing/Imaging Attenuatior. zt f I A ( d B l  

Differ- 

Delay 
entia1 

AS a Function of Number of Stages ( N )  Relative 
Bandwidth 

(M) 
(fc) 4 3 2 1 5 6  

1 

62.7 52.3 41.8 31.4 20.9 1 0 . 5  1/4 1 

102.8 85.6 68.5 51.4 34.3  17.1 1/8 1 

141.5 117.9 94.3 70.7 47.2 23.6 1/16 1 

179.0 149.2 119.4 89.5 59.7 29.8 1/32  1 

215.9 180.0 144.0 108.0 72.0 36.0 1/64 1 

252.5 210.4 168.3 126.2 84.2 42.1 1/128 

2 

106.9 89.1 71.3 53.4 35.6 17.8 1/8 2 

142.5 118.7 95.0 71.2 47.5 23.7 1/16 2 

179.3 149.4 119.5 69.6 59.8 29.9 1/32 2 

216 .0  160.0 144.a 108.0 72.0 36.0 1/64 2 

252.5 210.4 168.3 126.2 84.2 42.1 1/128 2 

2 8 8 . 8  240.7 192.5 144.4 96.3 48.1 1/256 

followed by a demonstration  that  truncation or rounding  may 
be used at each stage  of filtering, the  retained  number  of  bits 
decreasing monotonically  from stage to stage. An explanation 
is given which  relates the  truncation  or  rounding  in  inter- 
mediate stages to the  total  error in the  output  data stream. 
This  explanation is then  turned  around so that  the  filter  de- 
signer  can determine  the  amount of truncation  or  rounding to 
apply  at  each  stage,  without violating  design constraints. 

It is assumed that  the desired  frequency  characteristics have 
already  been  determined using information in  Section 111, 
resulting in choices for  the  rate  change  factor R ,  differential 
delay M ,  and  number of  stages N. It is  also assumed  through- 
out this  section  and  Section V that two’s complement  arith- 
metic is being  used. 

B. Register Growth 
The  system function  from  the j th stage up  to  and including 

the last stage can  be  expressed as a  fully  expanded  polynomial 
in z - l .  The resulting function is 

j =  1 , 2 ; . . , N  

= 2 hj(k)z-kRM, 
2 N +  1 -i 

k=O 

j = N + I ; . . , 2 N  (9a) 

where 
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are the impulse  response  coefficients.  This function is derived 
in  Appendix I. 

The  maximum register growth is defined as the  maximum 
output magnitude  resulting  from  the  worst possible input sig- 
nal relative to the  maximum  input  magnitude. This  growth 
is  used in the CIC filter design process to insure that  no  data 
are  lost  due to  register overflow. Using this  definition,  the 
maximum register growth  from  the first stage up  to  and  in- 
cluding the last stage is simply 

(RM- 1)N 

G m a x =  Ihl(k)l- (loa) 
k=O 

It is shown  in  Appendix I1 that  this can  be  simplified to  

Gmax = (lob) 

If  the  number  of  bits  in  the  input  data  stream is Bin, then 
the register growth can  be  used to calculate Bmax, the  most 
significant  bit at  the filter output.  That is, 

B,,, = [Nlog, RM t Bin - 11 (1 1) 

where the least  significant bit (LSB) of  the  input register is 
considered to be bit  number  zero  and where [x1 is the smallest 
integer not less than x. 

Not  only is B,,, the MSB at  the filter output,  but  it is  also 
the MSB for all  stages of  the filter.  This can  be shown  by 
applying modulo  arithmetic to the filter output  function. For 
two’s complement  arithmetic,  the  modulo  operation can be 
implemented by simply  eliminating bit  positions above B,,, . 

Since the  modulo  operation is used at  the  filter  output,  the 
same modulo  operation  can  be  applied  independently to each 
integrator  and  comb  stage.  This  implies  that B,,, is an  upper 
bound  for  each filter  stage. 

It is now shown that B,,, is also a  lower bound. Since the 
first N stages  of the filter  are  integrators  with unity  feedback, 
it is apparent  that  the variance  of the  integrator  outputs grow 
without  bound  for  uncorrelated  input  data. As  seen at  the 
output register, B,,, is the MSB for  each  integrator  since  this 
is a  significant bit  and is the highest  order bit  that can propo- 
gate into  the  output register. Since  a  propagation  path  must 
be  provided  through the  comb  section  for  this MSB, it  can be 
concluded  that B,,, must be the MSB not  only  for  the  inte- 
grators, but also for  the  combs  that  follow. 

C Truncation and Rounding 
B,,, is  large for  many  practical cases and  can  result in large 

register widths;  however, truncation or  rounding  may be  used 
at  each  filter stage reducing register widths  significantly. 

To calculate the  total  error  at  the filter output  due  to  trun- 
cation or rounding,  the mean  and variance  of the  error at each 
error  source is determined  and  then  the  corresponding  statistics 
at  the  filter  output  due  to  the source  alone is determined.  The 
total  mean  and variance at  the  output is then  determined  as 
the sum  of the  statistics  from these  individual  sources. 

There  are  a  total of 2 N  + 1  error  sources: the first 2 N  sources 
are  caused by  truncation  or  rounding  at  the  inputs to  the 
2 N  filter stages. The  last  error  source is due to truncation or 
rounding going into  the  output register.  The  error  sources  are 

given indexes  corresponding to  the filter stage numbers  shown 
in Fig. 1, with 2 N  + 1  identifying  the  error  source going into 
the  output register. 

It is often assumed that  rounding is always better  than  trun- 
cation,  however,  in the following  paragraphs it is shown  that 
except  for  the first  and  last  error  sources, the  output  error 
statistics are the same for both  truncation  and rounding. 
Furthermore,  to  keep  the  output  error  within  bounds, most 
practical designs  will make use of  full  precision  arithmetic at 
the first  error  source. As a  result,  the  only place where the 
designer need  worry  about  truncation versus rounding is at  the 
last  error  source going into  the  output register. 

It is assumed that  each  error  source  produces  white noise 
that is uncorrelated  with  the  input  and  other  error sources. 
Furthermore,  the  error  at  the j t h  source is assumed to have a 
uniform  probability  distribution  with  a  width of 

E.= { 0, if no truncation nor rounding 

2Bi, otherwise I 

where Bj is the  number  of LSB’s discarded at  the  jth source. 
It can  be  shown that since the  error  has  a  uniform  distribution, 
the  mean  of  the  error is 

$ Ej,  if truncation 
Eli = 

otherwise 

and  the variance  of the  error is 

To determine  the  statistics  at  the  output  due to the j th error 
source, we use the system  function  from  the j th stage up 
through  the  last  comb as given by (9). The  impulse  response 
coefficients  correspond to  independent  random processes that 
are summed  together to produce  one  filter  output.  The  error 
mean  and variance corresponding to the kth coefficient  are 
simply pjhj(k)  and u!h;(k), respectively, and since the  pro- 
cesses  are independent over k ,  the  total  statistics  at  the jth 
stage are the sums  of the  statistics for each impulse response 
coefficient.  That  is,  the  total  mean is 

where 

hi@), j = 1 , 2 , - - - , 2 N  
(1 53) 

j = 2 N t  1 

is designated the “mean  error gain” for  the j th error  source, 
Similarly, the  total variance  is 

where 

is designated the “variance error  gain”  for  the jth error  source. 
The  two  error gains are used to relate the  statistics  at  the  error 
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source to those  at  the output and  are  useful in the design 
process  because they are  independent  of  the  actual  error. 

It  can be demonstrated  that  the mean  error gain given by 
(15b) is zero for all but  the first  and  last  error  sources and 
furthermore,  the expression for  the first  error  source  can be 
simplified.  This  results in the  form 

From (12) and (14)  it is noted  that  the  error variance  is the 
same for  either  truncation  or  rounding and the  total  error 
mean given by (15a) and (17) is zero  for all but  the first and 
last  error  sources. As a  result,  the choice  of  truncation versus 
rounding  does  not  affect  the  error statistics  except for  the first 
and last  error  sources. 

The total mean and variance at  the  output  due  to  truncation 
and/or  rounding are 

and 

Using the foregoing  information  relating  error at  the sources 
to  error  at the output, we  can  now  work  backwards to  deter- 
mine the  number of bits to  discard given appropriate  error 

. constraints.  In  this  process,  only  the  variance is used as a  de- 
sign parameter  since it is  affected  by  truncation  and  rounding 
at all error sources. On the  other  hand,  the mean is affected- 
by  truncation  and  rounding  only  at  the  first  and  last  error 
sources. 

It is assumed that  the  number of  bits  retained in the  output 
register is Bout, so the  number of LSB’s discarded is 

B2N+1 -Bmax -Bout i- 
- (20) 

The  resulting  error  variance u%2N+I is defined  by (1 6). 
A legitimate design decision at  this  point is to  make  the vari- 

ance from  the first 2 N  error  sources less than  or equal to  the 
variance  for  this  last  error  source, and also to distribute  the 
error  about equally  among  these  sources.  This  results in 
the following design equation  for  choosing  the  number of 
LSBs  to discard at each  stage: 

for j = 1,2 ,  . - ,2N. This  equation is derived in Appendix 111. 

D. Design Example 
We wish to design a  decimation  filter to reduce the sampling 

rate from 6 MHz to  240 kHz  with  a  passband  of 30 kHz.  The 
aliasing attenuation  must be better  than 60 dB  with  a  falloff 
in the passband of less than 3 dB. The number of bits  in  the 
input  and  output registers is Bin = Bout = 16. 

We note  that  the  rate change factor is R = 25  and the  band- 

1 , CARRY-OUT r--------- 
I 
I 
I 

4 1  

I W T J  
I 
I 

I 

I 

I I ‘  I 

I I 

@) 
Fig. 4. CIC building  blocks. (a) 4 bit  integrator; @) 4 bit  comb. 

width  relative to  the low  sampling  rate is f, = $. Referring 
to Tables I and 11, we see that  a  filter  with N =  4 stages and  a 
differential  delay  of M = 1  results  in an aliasing attenuation of 
68.5 dB and  a passband attenuation of 0.90 dB. To simplify 
the  design,  truncation is used a t  all stages  of the  filter. We 
calculate  the MSB for  the  filter as BmaX = 34 resulting  in 

Using (1 5a),  (1 6) ,  and (17) we calculate the  error gain for 
each stage and using (21) we determine  the  number of LSB’s 
discarded for  the 2 N  filter  stages to  be 1 , 6 , 9 , 1 3 ,  14, 15, 16, 
and  17, respectively. Using (18)  and  (19) we calculate the 
total mean  and  standard  deviation  assuming  a  binary  point 
to  the right  of the LSB of the  output register. The mean is 
PT/219 = 1.245 and  the  standard  deviation of = 0.373. 

The  decimator is to  be implemented in hardware using 4 bit 
parts. As a result,  the  register  lengths  in  this  example,  except 
for the first  integrator, can be truncated  up to  the nearest 
multiple of 4 bits  resulting in  LSB’s to  be  discarded  for  the 
2Nstagesof0,3,7,11,11,15,15,and 15,respectively.  The 
mean is now  reduced to PT/219 = 0.500 and  the  standard 
deviation is slightly better  at = 0.301. 

The design uses two basic  building  blocks:  a 4 bit  integrator 
shown in Fig.  4(a) and  a  4  bit  comb shown in Fig. 4(b). These 
are  combined in Fig. 5 to  form  the composite CIC decimator. 
Each  building  block  has  a  4 bit  input,  4  bit  output, carry-in 
and  carry-out.  A  comb stage built  from  the  4  bit  comb  build- 
ing blocks  requires  a  subtraction  on the feed-forward  path. It 

B 2 N + 1  = 19. 
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INTEGRATOR  SECTION COMB SECTION 

KEY: 

I = 4-BIT  INTEGRATOR 
BUILDING BLOCK 

C = 4-BITCOMBBUILDING 
BLOCK 

Fig. 5. Example CIC decimation filter for N = 4, M = 1, and R = 25. 

is implemented  by  taking  the one’s complement (inverting) 
and using the  low  order carry-in port  to form  the two’s com- 
plement  result. 

V. CIC INTERPOLATION FILTER DESIGN 
A. Design Overview 

This  section  presents design considerations  for CIC interpo- 
lation  filters. For each  filter stage the  minimum register width 
is determined.  Rounding  cannot  be used for CIC interpolators 
(except going into  the  output register); the  introduction  of 
small errors  in  the  integrator stages  causes the variance of  the 
error to grow without  bound resulting  in an unstable  filter. 

B. Register  Growth 
The  derivation  of  minimum register width  for  the j th filter 

stage  is rather  straightforward.  First,  the  system  function 
from  the filter input  up  to  and including the  jth stage is deter- 
mined.  The  system  function  together  with  a  worst case input 
signal are used to evaluate the  maximum register growth up  to 
that  point,  and  the  growth  together  with  the  input register 
width is used to determine  the  minimum register width  at  the 
j th stage. 

Using this approach,  the  maximum register growth  up to the 
j th  stage can  be  shown to be 

j =  1,2 ; .*  , N  

assuming that  the  input signal producing  this register growth 
is at  the  low sampling  rate f,/R. The  minimum register width 
based on this  growth is 

Wi = [Bin + log, Gj] (23) 

where Bin is the  input register width. 
When the  differential  delay is one,  then, according to (23), 

the  width of the last  comb is actually larger than  the  width of 
the first  integrator  that follows. Using the  modulo  arithmetic 
argument  introduced in Section IV, we  can establish the special 

KEY: 

I = CBITINTEGRATOR 
BUILDING BLOCK 

C = 4-BIT COMB BUILDING 
BLOCK 

INTEGRATOR  SECTION 

SI 

T 
CHOOSER 
CONTROL 

1 1 1 1  0 0 0 0  

Fig. 6 .  Example CIC interpolation filter N = 4, A4 = 2, and R = 64 to 
512. 

condition  for  the last comb such that 

W N = B i ,  + N -  1 i f M =  1. (24) 

After  the  last  integrator,  truncation,  or  rounding  can be  used 
going into  the  output register. This is the only  source of arith- 
metic  error in CIC interpolators. If the  number  of  bits  in  the 
output register is Bout,  then  the  number of LSBs discarded is 

BT = w2N - Bout. (25) 

Assuming the  error has  a  uniform  probability  distribution 
and  with  the  binary  point to the right of the LSB of the  out- 
put register, the  error mean is 0.5 for  truncation  and  zero (0) 
for  rounding;  the  error  standard deviation i s  = 0.289. 

C Design Example 
We are to design  an interpolation  filter to handle  rate change 

factors  of R = 64,  128,  256, and 512, resulting  in  a  final 
sample  rate of 5 MHz. The  input  and  output register widths 
are Bin  =Bout = 8. Truncation is  used  going into  the  output 
register. We know  from  other  considerations  that  an N = 4 
stage fdter  with  a  differential delay of M = 2 will meet  fre- 
quency design requirements. 

Since the same filter will be used  over a range  of rate change 
factors,  maximum register widths  must be chosen over  all rate 
change factors. These maximum  widths  occur for R = 512, 
the  maximum  rate change factor.  The  hardware design must 
include  shifting  hardware to choose  the  appropriate  bits  from 
the filter output as a  function of the  current  rate change factor. 

The register widths are calculated using (23)  resulting in 
values  of 9 ,  10, 11,12,   12,21,30,  and  39, respectively.  Since 
4  bit  parts are to be used, the  actual  widths  implemented are 
12,  12, 12, 12,   12,24,32,  and  40. The  number of  LSB’s dis- 
carded going into  the  output register (as controlled  by  the 
shifting  hardware) is BT = 22,25,28,  or 31  for  the  four  rate 
change factors. 

Fig. 6 shows the  implementation of the  interpolator using 
the  two basic building  blocks  shown in Fig. 4. Hardware is 
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required to vary the  rate  change  factor.  In  addition,  a  chooser 
is required to select the  output  bits. This  selection is a  func- 
tion  of  the  rate change factor. 

VI. CONCLUSIONS 
It  has been  shown  that CIC filters  are an economical  alterna- 

tive to conventional  decimation  and  interpolation  filters. 
CIC filters are implemented using a  cascade of ideal inte- 

grator stages operating at a  high  sampling  rate and  an  equal 
number  of  comb stages operating  at  a  low  sampling  rate. 
These filters  require no multipliers  and use limited  storage; 
their regular structure,  demonstrated  by Figs. 5 and 6, simplify 
their  implementation  in  .hardware;  they can be applied easily 
to problems  requiring  a  rate change factor  that is selectable 
over a  wide  operating range. 

The  frequency  response  of CIC filters is fully  determined by 
only  three  integer  parameters  resulting  in  a  limited range  of 
filter  characteristics. The aliasing/imaging error  in the pass- 
band  can  be  held  within  arbitrary  bounds by appropriate 
choice of these  parameters.  However,  the  bandwidth  and  the 
frequency  response  outside  the  passband  are severely limited. 

For CIC decimation  filters,  truncation  or  rounding  may  be 
used at each stage of  the  filter  with a  nondecreasing  number 
of  LSB's discarded at successive stages. The MSB of each 
stage  is proportional to the maximum register growth  expected 
at  the filter output. This  requires that all stages  have the 
same  MSB. 

For CIC interpolation  filters,  the use of truncation  or  round- 
ing will produce an unstable  filter  response. As a  result,  full 
precision  arithmatic  must  be  used at each stage  of the filter. 
Unlike CIC decimators,  however,  the MSB increases  in  succes- 
sive  stages with  the MSB of  each stage being  proportional to 
the register  growth from  the filter input  up to the stage in 
question. 

APPENDIX I 
SYSTEM FUNCTION FOR CIC  DECIMATORS 

In  this  Appendix we  derive (9), the system function  for CIC 
decimators  from  the  jth stage up  to and  including the last 
stage. The  form of the  function is that of a  fully  expanded 
polynomial  in z- ' .  There  are two cases expressed  by (9): 
case 1 ,  where j is in the range 1 to N and case 2 ,  where j is in 
the range N t 1 to 2N. 

First we  derive  case 1. In  this case there  are N - j t 1 inte- 
grators  and N combs.  The  system  function is simply 

~ ~ ( z )  = ~ f J - i + 1 ~ ; ,  j = 1 ,  . * , N .  (Al l  

Substituting ( 1 )  and (2 )  into  (Al) results  in 

This equation can  be expanded  by dividing the  denominator 
into  the  numerator resulting  in 

k=O 

A dimensional  analysis  of  (A3)  indicates that  the  order  of 
the  polynomial in terms  of z-l is 

M(j- l ) t ( R M -   1 ) ( N -  j t  l ) = ( R M -   1 ) N t j -  1 .  (A4) 

Thus,  the system function can be  expressed as a  fully  expanded 
polynomial  of the same order.  The  polynomial  has  the  form 

H~(z) = hj(k)z-k 
( R M -   1 ) N + j -  1 

k=O 

where hj(k) are the  polynomial  coefficients. 

expansion.  This  results in 
Another way of expressing (A2) is in terms  of  its  binomial 

= [ l = O  ( - 1 )  l ( y ) z - R M l ] .  [ u = o  -f r - j t u ) z - u ]  u 

and  taking  the cross product  of  the  two polynomials  results  in 

In  this  expression,  terms  with  identical  powers  of z - l  can be 
collected  together.  Thus, for a  particular  nonnegative value 
k ,  where 

k = R M Z t v  (As) 

it is apparent  that E can  range  over the integers 

1 = 0 , 1 , . * - ,  [k/RM] 649) 

without  forcing u out of  range.  Using  (A8) and (A9)  we can 
now  collect  terms  resulting  in  the  fully  expanded  polynomial 

j = 1 , 2 ; . - , N .  (A10) 

The  form of this  polynomial is the same  as  (A5) where  the 
range  of k is  established as k = 0, 1 , * * , (RM - l ) N  t j - 1 .  
This results  in  (9) for case 1. 

We now derive  case 2.  In  this  case,  where j is in the range 
j = N t 1 , .  . , 2 N ,  there are 2N t 1 - j combs  and  no  inte- 
grators.  The  system  function is simply 

H j ( ~ ) = H : N + l - j ,  j = N t   1 ; . . , 2 N  (A1 1 )  

and  substituting (2)  into (A1 1) results in 

H j ( z ) = ( l  - ~ - ~ ~ ) ~ ~ + ~ - j ,  j = N t  I ; - .  ,2N.  ('412) 

The  binomial  expansion  of (A12) results in (9) for case 2 .  

APPENDIX I1 
MAXIMUM REGISTER GROWTH I N  CIC DECIMATORS 

Equation ( 1  Ob) is derived  resulting  in  a  simplified  expression 
for  the  maximum register growth  in CIC decimators.  This 
register growth is defined  by (1 Oa). 

It is apparent  that  (sa), evaluated at j =  1, is the system 
function  for  the  composite CIC filter  and is just  an  alternate 
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form of (3). Combining  these two  equations results in 
UT. -- 2 ’Fj 2 - 1 2B. 2 

I 1 7  . IL  

(RM-1)N 
H 1 ( Z )  = h,(k)z-k  = [ .-.IN RM-1 

(A131 This  equation  combined  with (A17) results in the  inequality 
k=O k=O 

and evaluating (A1 3) at z = 1 results  in 

HI(1) = h,(k) = (my. ( R M - l ) N  

k = O  

Taking the logarithm base 2 of (A19) and  rearranging  terms 
results in 

1 6 
In  equation  (A13) it is noted  that  the system function is the  Bj < -logzFj t log, u ~ ~ ~ + ~  t -log, - 

2 N ’  (A20) 
product of N system  functions  of  the  form 

One choice of Bi is the largest  integer not greater  than the 
Y k .  (A15)  expression on  the right-hand side of (A20). This  choice  results 

k in (2 1). 

Since  this  polynomial  has all positive  coefficients, it follows REFERENCES 
that  the  product of two  or more  of  these  polynomials  results 
in a  polynomial that also  has all positive  coefficients. As a 
result we can equate  the coefficients  with  their  absolute values. 
This  results in a version of  (A14)  with  the form 

Substituting  this  expression  into (loa) results in (lob),  the 
equation to  be derived. 

APPENDIX I11 
DESIGN EQUATION FOR CIC DECIMATORS 

In  this  Appendix, (21) is derived.  The  equation is used  in 
the design of CIC decimators to  determine  the  number of 
LSBs to  discard at each  stage  of  filtering.  The design criteria 
is to make the variance from  the first 2N error  sources less 
than  or  equal  to  the variance from  the last  error  source (i.e., 
error  source 2N + l), and also to  distribute  the error about 
equally  among  these  sources.  These  criteria  can be expressed 
by  the  inequality 

2 N. 

In (12) if one assumes that  either  truncation or  rounding is 
being used then (12), (14), and  (16a) can be combined  result- 
ing  in 
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