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Reducing IIR Filter Computational Workload 
 

By Richard (Rick) Lyons [May 2019] 
 

This document describes a straightforward method to significantly reduce the number 

of necessary multiplies per input sample of traditional IIR lowpass and highpass 

digital filters. 

 

Reducing IIR Filter Computations Using Dual-Path Allpass Filters 
We can improve the computational speed of a lowpass or highpass IIR filter by 

converting that filter into a dual-path filter consisting of allpass filters as 

shown in Figure 1. 
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    FIGURE 1. IIR filter –to– dual-path allpass filters conversion. 

 

The dual A0(z) and A1(z) filter paths in Figure 1 are cascades of simple 1st- and 

2nd-order allpass filters. (Allpass filters are a specialized class of IIR filters 

whose frequency magnitude responses are constant over the full frequency range from 

zero to the fs input data sample rate [1].) 

 

Figure 2 shows an example of this standard IIR –to– parallel allpass filter 

conversion process, where our original IIR filter is a 5th-order lowpass filter. 
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       FIGURE 2. Example of "standard" IIR filter –to– parallel-path 

                 allpass filter conversion. 
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The original IIR and the dual-path filters in Figure 2 have identical frequency 

magnitude responses. A key point of this document is that the filter on the left 

side of Figure 2 requires 11 multiplies per input sample whereas the parallel 

filter on the right side only requires five multiplies per input sample.  

 

Details of the allpass sections within the 5th-order dual-path filter on the right 

side of Figure 2 are given in Figure 3. The ck coefficients are real-valued scalars.  
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           FIGURE 3. 1st- and 2nd-order allpass sections and their  

                     z-domain transfer functions. 

 

We see in Figure 3 that H1(z) and H2(z) are indeed allpass filters because their 

numerator coefficients are in reverse order from their denominator coefficients. 

 

At first glance the notion of implementing a lowpass or highpass IIR filter using 

allpass filters seems impossible. An explanation of how this is possible is found 

in Reference [2], graciously supplied online by its author DSP guru fred harris.  

 

As additional examples, we show the result of our standard IIR –to– dual-path 

allpass conversion for standard 3rd-, 7th-, and 9th-order IIR filters in Figure 4. 
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         FIGURE 4. Dual-path allpass IIR filters: (a) 3rd- and 7th-order;  

                   (b) 9th-order. 
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Computational Savings When Using the Dual-Path Allpass Filters 
Table 1 compares the computational workloads of traditional Direct Form I IIR 

filters relative to the dual-path IIR filters in Figures 3 and 4. The bottom row of 

Table 1 illustrates the computational advantage of the dual-path allpass filters. 

 

   Table 1. Nth-Order IIR Filter Computations per output (N is odd). 

 Multiplies Adds Delays 

Nth-order Direct Form I 

IIR filter 
2N+1 2N 2N 

Nth-Order Direct Form I 

IIR Filter utilizing 

numerator coefficient 

symmetry 

(3N+1)/2 2N 2N 

Proposed Nth-order 

dual-path IIR filter 

(using allpass 

sections) 

N 2N N+1 

 

Additional information regarding our 'IIR –to– dual-path allpass filter conversion' 

process is provided in the Appendices of this document. That information is: 

 

• Appendix A: Allpass Filter Conversion Implementation Considerations, 

• Appendix B: Standard IIR –To- Dual-Path Allpass Filter Conversion 

              Design Example, and 

• Appendix C: MATLAB code to compute dual-path allpass filter coefficients. 
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Appendix A: Allpass Filter Conversion Implementation Considerations  
 

A-1: Restrictions on the Original Direct IIR Filter  
To use this document's technique for converting a traditional IIR filter to an 

efficient parallel-path allpass structure, the original IIR filter must: 

 

* Be lowpass or highpass with no poles on or outside the unit cycle. 

* Have a transfer function with numerator and denominator polynomials  

  of equal and odd-order. (If the original IIR filter is even order  

  the allpass coefficients will be complex-valued which negates the  

http://www.emba.uvm.edu/~gmirchan/classes/EE275/Handouts_Ed4/Ch07(4e)Handouts/Ch7(1)Handouts_4e.pdf
https://www.researchgate.net/publication/278320928_A_Most_Efficient_Digital_Filter_The_Two-Path_Recursive_All-Pass_Filter
https://www.researchgate.net/publication/278320928_A_Most_Efficient_Digital_Filter_The_Two-Path_Recursive_All-Pass_Filter


 

Copyright © Richard Lyons 2019                                 4 

 

 

  computational advantage of using allpass filters.) 

* Have a maximum frequency magnitude response of one (unity). 

* Have symmetrical or anti-symmetrical numerator coefficients. 

 

Filters designed with MATLAB's ellip(), butter(), cheby1(), and cheby2() commands 

satisfy the last two of the above restrictions. 

 

A-2: Mathematical Considerations  
The final multiplications by 1/2 at the right sides of Figures 1 and 2, that can be 

implemented with a binary right shift, ensures that the parallel-path filter has a 

maximum gain of one. Whether the two allpass parallel paths' outputs are added or 

subtracted depends on whether the original IIR filter is lowpass or highpass. 

 

In floating-point numerical implementations the original IIR and parallel-path 

allpass filters in Figure 2 have identical frequency magnitude responses.  

 

The good news is that the Figure 3 allpass sections maintain their allpass behavior 

when, and have low frequency magnitude response sensitivity to, quantized 

coefficients used as demonstrated on pages 712-713 of Reference [4]. 

 

A-3: Software Considerations  
Figure A-1 shows the structures of the 1st- and 2nd-order allpass filters, as well 

as the software commands needed to compute a single output sample. The underlined 

operations in Figure A-1 perform the data shifts through the delay elements in 

anticipation of the arrival of the next x(n) input sample.  
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          FIGURE A-1: 1st- and 2nd-order allpass filters and their  

                      implementation software commands. 

 

Appendix B: How the Standard IIR –To- Dual-Path Allpass  

            Filter Conversion Process Works  
Here we show how this 'IIR –to- dual-path allpass filter conversion' process works 

by way of example. Let's start with a 5th-order lowpass IIR filter defined by the 

MATLAB command: 

 

  [b,a] = cheby1(5,0.2,0.15); % 0.2 dB passband ripple, .15 cutoff freq 

 

The transfer function of this 5th-order IIR filter is: 
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Next, we compute the filter's five pole locations and plot them in Figure B-1(a). 
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                   FIGURE B-1: 'Original IIR filter poles. 

 

Those pole values, sorted from their smallest to their largest magnitudes, are: 

 

   P1 = 0.8005  

   P21 = 0.7989 - j0.2566 

   P22 = 0.7989 + j0.2566 

   P31 = 0.8259 - j0.4439 

   P32 = 0.8259 + j0.4439 

 

The real-valued pole P1 is assigned to the denominator coefficient of a 1st-order 

allpass section. Because the original IIR filter is always odd-order, there will 

always be a real-valued pole assigned to a 1st-order allpass section. The 

denominator of that 1st-order allpass section's transfer function, in terms of z
-1
, 

is (1 –P1z
-1
). So the denominator coefficients of the 1st-order allpass filter are 

 

   1st-order allpass section denominator coeffs = [1, –P1] = [1 -0.8005]. 

 

The complex-conjugate pole pair P21/P22 are assigned to the denominator coefficient 

of a 2nd-order allpass section. The denominator of that 2nd-order allpass section's 

transfer function, in terms of z
-1
, is  

(1 –P21z
-1
)(1 –P22z

-1
) = 1 –(P21+P22)z

-1
 + P21P22z

-2
. So the denominator coefficients 

of this 2nd-order allpass filter are 

 

   2nd-order allpass section denominator coeffs = [1, –(P21+P22), P21P22]  

                                                = [1, -1.5978, 0.7041]. 
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The complex-conjugate pole pair P31/P32 are assigned to the denominator coefficient 

of another 2nd-order allpass section. The denominator of that 2nd-order allpass 

section's transfer function, in terms of z
-1
, is  

(1 –P31z
-1
)(1 –P32z

-1
) = 1 –(P31+P32)z

-1
 + P31P32z

-2
. So the denominator coefficients 

of this 2nd-order allpass filter are 

 

   2nd-order allpass section denominator coeffs = [1, –(P31+P32), P31P32]  

                                                = [1, -1.6517, 0.8791]. 

 

So now, for this example, we have computed the denominator coefficients for a 

single 1st-order allpass filter section and two 2nd-order allpass filter sections. 

Those denominator coefficients are: 

 

    [1, -0.8005] ------------- Single 1st-order for Top-Path A0(z) section  

    [1, -1.5978, 0.7041] ----- First 2nd-order for Bottom-Path A1(z) section 

    [1, -1.6517, 0.8791] ----- Second 2nd-order for Top-Path A0(z) section 

 

Using the "pole interlacing property" as shown in Figure B-1(b), based on their 

angles the alternate poles will be assigned to the top A0(z) and bottom A1(z) paths 

of the dual-path allpass filter in this document's Figure 2 [3,4]. 

 

The results of using the "pole interlacing property" is shown in Figure B-2. Notice 

how the dual-path allpass filter sections' numerator coefficients are their 

denominator coefficients in reverse order. The numerator coefficients produce the 

z-plane zeros shown in Figure B-2. The reversed-order coefficients ensure that the 

zeros' locations are the reciprocals of the poles' locations. That reciprocal 

property is necessary for the filter sections to have allpass frequency-domain 

behavior. 
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          FIGURE B-2: Result of the example 'IIR –to- dual-path  

                      allpass filter conversion'.  

 

The frequency magnitude responses of the original IIR filter and the resultant 

dual-path allpass filter are shown in Figure B-3. 
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       FIGURE B-3: Frequency magnitude responses. Thick shaded curve  

                   for the original IIR filter, black dashed curve for 

                   the dual-path allpass filter.  

 

Based on the networks in this document's Figure 3, our example dual-path allpass 

filter in the center of Figure B-2 is implemented as shown in Figure B-4. 
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            FIGURE B-4: Dual-path allpass filter implementation.  

 

 

Appendix C: MATLAB Code To Compute Allpass Sections' Coefficients  
The process of computing allpass sections' denominator coefficients comprises the 

following steps: 

 

1. Compute input IIR filter's poles' & zeros locations. 

2. Determine if input IIR filter is lowpass or highpass. 

3. Sort IIR filter's poles, based on their magnitudes, to compute  

   allpass sections' denominator coeffs. 

4. Find the 1st- and 2nd-order sections' denominator coeffs. 

5. Sort 'Denoms' matrix into "Bottom_Path_Denoms" & "Top_Path_Denoms" using  

   the "Pole Interlacing Property". 

6. Partition the 'Top_Path_Denoms' into 1st- & 2nd-order sections (the  

   Bottom_Path_Denoms will always be the desired 2nd-order sections). 

7. Convolve Top filter sections' coeffs to enable User spectral plotting. 

8. Convolve Bottom filter sections' coeffs to enable User spectral plotting. 

 

Once we know the dual-path allpass filter sections' denominator coefficients, the 

dual-path allpass filter sections' numerator coefficients are the denominator 

coefficients in reverse order. 

 

The MATLAB code to implement the above eight steps is the following: 
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function [Top_1stOrd_Denom,Top_2ndOrd_Denoms,Bottom_Denoms,... 

       Filter_Type,Top_Casc_Denoms,Bottom_Casc_Denoms] ... 

         = Allpass_Find_Coeffs(Numer_IIR, Denom_IIR) 

% Computes dual-path allpass denominator coefficients, 

% using the "Pole Interlace Property" of standard IIR filters, as 

% described on page 462 of Sanjit Mitra's "Digital Signal Processing,  

% A computer-Based Approach" book and page 89 of Vaidyanathan's   

% Multirate Systems book. 

% The input IIR filter must be an odd-order lowpass or highpass filter. 

% The dual-path allpass numerator coefficients are the denominator 

% coefficients, computed by this function, reversed in order. 

  

% Inputs: 

%   Numer_IIR = numerator coeffs of an IIR lowpass or highpass filter. 

%   Denom_IIR = denominator coeffs of an IIR lowpass or highpass filter 

% Outputs: 

%   Top_1stOrd_Denom = denominator coeffs of top path 1st-ord section 

%   Top_2ndOrd_Denoms = denominator coeffs of top path 2nd-ord sections. 

%   Bottom_Denoms = denominator coeffs of bottom path sections. 

%   Filter_Type = Original IIR filter type: 'Lowpass' or 'Higpass'. 

%   Top_Casc_Denom = Top path cascaded (convolved) denominator 

%             coeffs (used for allpass filter freq response plotting). 

%   Bottom_Casc_Denom = Bottom path cascaded (convolved) denominator 

%             coeffs (used for allpass filter freq response plotting). 

% ** Example ** 

% [b, a] = cheby1(5, .2, .15); % 5th-order lowpass IIR filter 

% [Top_1stOrd_Denom, Top_2ndOrd_Denoms, Bottom_Denoms,... 

%        Filter_Type, Top_Casc_Denoms, Bottom_Casc_Denoms] ... 

%          = Allpass_Find_Coeffs(Numer_IIR, Denom_IIR) 

% ** Example Results ** 

% Top_1stOrd_Denom = 1.0000   -0.8005 

% Top_2ndOrd_Denoms = 1.0000   -1.6517    0.8791 

% Bottom_Denoms = 1.0000   -1.5978    0.7041 

% Filter_Type = Lowpass 

% Top_Casc_Denom = 1.0000   -2.4523    2.2014   -0.7038 

% Bottom_Casc_Denom = 1.0000   -1.5978    0.7041 

     

    % Rick Lyons, May, 2019 

  

% Compute Input IIR filter's poles' & zeros locations 

IIR_Poles = roots(Denom_IIR); 

IIR_Zeros = roots(Numer_IIR); 

  

% Determine if input IIR filter is lowpass or highpass 

if mean(real(IIR_Poles)) > mean(real(IIR_Zeros)) 

    Filter_Type = 'Lowpass'; 

else 

    Filter_Type = 'Higpass'; 

end 

  

% Sort IIR filter's poles, based on their magnitudes, to compute  

% allpass sections' denominator coeffs 

Sorted_Poles = sort(IIR_Poles); 

Num_Poles = length(Sorted_Poles); 

     

% Now find the 1st- and 2nd-order sections' denominator coeffs 

% based on the single real pole and the complex conjugate pole pairs 

    % Compute 1st-order section's denominator coeffs 

    Denoms(1,:) = [1, -Sorted_Poles(1), 0]; 
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    % Compute 2nd-order sections' denominator coeffs 

    for K = 1:(Num_Poles-1)/2 

        Denoms(K+1,:) = [1, -(Sorted_Poles(2*K)+Sorted_Poles(2*K+1)), ... 

                       Sorted_Poles(2*K)*Sorted_Poles(2*K+1)]; 

    end 

     

% Sort 'Denoms' matrix into "Bottom_Denoms" & "Top_Denoms" 

% using the "Pole Interlace Property". 

[Number_of_Demon_Rows,Temp] = size(Denoms); % Nu rows in Demons matrix 

Top_Denoms = []; % Initializ 

Bottom_Denoms = []; % Initialize 

    % Perform allpass pole interlacing based on whether the  

    % variable 'Number_of_Demon_Rows' is an odd or even number 

    if Number_of_Demon_Rows == 2*floor(Number_of_Demon_Rows/2) 

        % Number_of_Demon_Rows is even 

        Swap = 'N'; 

        for K = 1:ceil(Number_of_Demon_Rows/2) 

            Top_Denoms(K,:) = Denoms(K+(K-1),:); 

        end 

        for K = 1:ceil(Number_of_Demon_Rows/2) 

            Bottom_Denoms(K,:) = Denoms(2*K,:); 

        end 

    else 

        % Number_of_Demon_Rows is odd 

        Swap = 'Y'; 

        for K = 1:ceil(Number_of_Demon_Rows/2) 

            Top_Denoms(K,:) = Denoms(K+(K-1),:); 

        end 

        for K = 1:floor(Number_of_Demon_Rows/2) 

            Bottom_Denoms(K,:) = Denoms(2*K,:); 

        end 

    end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

% Break 'Top_Denoms' into 1st- & 2nd-order sections 

Top_1stOrd_Denom = Top_Denoms(1,1:2); % Eliminate zero coeff 

Top_2ndOrd_Denoms = Top_Denoms(2:end, 1:3); % 2nd, 3rd, 4th,... rows 

  

    % Check, and correct, if no Top 2nd-order denominators 

    Size_of_Top_Denoms = size(Top_Denoms); 

    if Size_of_Top_Denoms(1) == 1 % 'Top_Denoms' has no 2nd-order parts 

      disp('Allpass Top-path is 1st-order only (no 2nd-order sections)') 

      Top_2ndOrd_Denoms = [0, 0, 0]; 

    else,end 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Convolve Top filter sections' coeffs for spectral plotting 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%Top_Casc_Denoms = Top_Denoms(1,1:2); 

Top_Casc_Denoms = Top_1stOrd_Denom; 

[Top, Temp] = size(Top_Denoms); % Numb of 'Top_Denoms' rows 

for P = 2:Top 

    %Top_Denoms(P,:); 

    Top_Casc_Denoms = conv(Top_Casc_Denoms, ... 

                             Top_Denoms(P,:)); 

end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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% Convolve Bottom filter sections' coeffs for spectral plotting. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%Bottom_Casc_Denoms = [1]; 

Bottom_Casc_Denoms = Bottom_Denoms(1,:); 

[Bot, Temp] = size(Bottom_Denoms); 

for Q = 2:Bot 

    Bottom_Casc_Denoms = conv(Bottom_Casc_Denoms, ... 

                                 Bottom_Denoms(Q,:)); 

end 

 


