

Copyright © Richard Lyons 2019 1

Reducing IIR Filter Computational Workload

By Richard (Rick) Lyons [May 2019]

This document describes a straightforward method to significantly reduce the number

of necessary multiplies per input sample of traditional IIR lowpass and highpass

digital filters.

Reducing IIR Filter Computations Using Dual-Path Allpass Filters
We can improve the computational speed of a lowpass or highpass IIR filter by

converting that filter into a dual-path filter consisting of allpass filters as

shown in Figure 1.

Allpass
A0(z)

Allpass
A1(z)

IIR
H(z)

±
‘+’ for lowpass
‘–’ for highpass

1/2

Efficient parallel

implementation of an IIR filter

Convert to parallel allpass
structure

y(n)
x(n)y(n)x(n)

 FIGURE 1. IIR filter –to– dual-path allpass filters conversion.

The dual A0(z) and A1(z) filter paths in Figure 1 are cascades of simple 1st- and

2nd-order allpass filters. (Allpass filters are a specialized class of IIR filters

whose frequency magnitude responses are constant over the full frequency range from

zero to the fs input data sample rate [1].)

Figure 2 shows an example of this standard IIR –to– parallel allpass filter

conversion process, where our original IIR filter is a 5th-order lowpass filter.

Original Standard
5th-order Direct Form-I IIR Filter

x(n) y(n)

z–1

z–1 z–1

z–1

b0

b2

b1 a1

a2

z–1 z–1

b3 a3

z–1 z–1

b5 a5

z–1 z–1

b4 a4

11 multipliers and 10 delays

Convert to parallel
allpass structure

1st-order
Allpass

±

‘+’ for lowpass
‘–’ for highpass

1/2
x(n)

2nd-order
Allpass

2nd-order
Allpass

1 multiplier
1 delay

Parallel Allpass Filters

A0(z)

A1(z)

2 multipliers
2 delays

2 multipliers
2 delays

y(n)

 FIGURE 2. Example of "standard" IIR filter –to– parallel-path

 allpass filter conversion.

Copyright © Richard Lyons 2019 2

The original IIR and the dual-path filters in Figure 2 have identical frequency

magnitude responses. A key point of this document is that the filter on the left

side of Figure 2 requires 11 multiplies per input sample whereas the parallel

filter on the right side only requires five multiplies per input sample.

Details of the allpass sections within the 5th-order dual-path filter on the right

side of Figure 2 are given in Figure 3. The ck coefficients are real-valued scalars.

2nd-order allpass section1st-order allpass section

z–1
Y2(z)

z–1+

–
c2

c3

X2(z)

–

+

c1

z–1

z–1

Y1(z)X1(z)

H1(z) =
Y1(z)

X1(z) 1 + c1z–1

c1 + z–1

= H2(z) =
Y2(z)

X2(z) 1 + c2z–1 + c3z–2

c3 + c2z–1 + z–2

=

 FIGURE 3. 1st- and 2nd-order allpass sections and their

 z-domain transfer functions.

We see in Figure 3 that H1(z) and H2(z) are indeed allpass filters because their

numerator coefficients are in reverse order from their denominator coefficients.

At first glance the notion of implementing a lowpass or highpass IIR filter using

allpass filters seems impossible. An explanation of how this is possible is found

in Reference [2], graciously supplied online by its author DSP guru fred harris.

As additional examples, we show the result of our standard IIR –to– dual-path

allpass conversion for standard 3rd-, 7th-, and 9th-order IIR filters in Figure 4.

(b)

Allpass A0(z)

Allpass A1(z)
±

1/2
y(n)

x(n)

2nd-order
allpass

1st-order
allpass

2nd-order
allpass

Dual-path 7th-order allpass IIR

(a)

2nd-order
allpass

Allpass A0(z)

Allpass A1(z)
±

‘+’ for lowpass
‘–’ for highpass

1/2
y(n)

x(n)

2nd-order
allpass

1st-order
allpass

2nd-order
allpass

Dual-path 9th-order allpass IIR

2nd-order
allpass

2nd-order
allpass

±

1/2
y(n)

Allpass A0(z)

Allpass A1(z)
x(n)

2nd-order
allpass

1st-order
allpass

Dual-path 3rd-order allpass IIR

 FIGURE 4. Dual-path allpass IIR filters: (a) 3rd- and 7th-order;

 (b) 9th-order.

Copyright © Richard Lyons 2019 3

Computational Savings When Using the Dual-Path Allpass Filters
Table 1 compares the computational workloads of traditional Direct Form I IIR

filters relative to the dual-path IIR filters in Figures 3 and 4. The bottom row of

Table 1 illustrates the computational advantage of the dual-path allpass filters.

 Table 1. Nth-Order IIR Filter Computations per output (N is odd).

 Multiplies Adds Delays

Nth-order Direct Form I

IIR filter
2N+1 2N 2N

Nth-Order Direct Form I

IIR Filter utilizing

numerator coefficient

symmetry

(3N+1)/2 2N 2N

Proposed Nth-order

dual-path IIR filter

(using allpass

sections)

N 2N N+1

Additional information regarding our 'IIR –to– dual-path allpass filter conversion'

process is provided in the Appendices of this document. That information is:

• Appendix A: Allpass Filter Conversion Implementation Considerations,

• Appendix B: Standard IIR –To- Dual-Path Allpass Filter Conversion

 Design Example, and

• Appendix C: MATLAB code to compute dual-path allpass filter coefficients.

References

[1] S. Mitra, Digital filter lecture slides (allpass filter discussion

 starts at slide# 23). Available at:

http://www.emba.uvm.edu/~gmirchan/classes/EE275/Handouts_Ed4/Ch07(4e)Handouts/Ch7(1)Handouts_4e.pdf

[2] f. harris, "A Most Efficient Digital Filter: The Two-Path Recursive All-Pass

Filter", Streamlining Digital Signal Processing, A Tricks of the Trade Guidebook

(IEEE Press/Wiley, 2007), Chapter 9, pp. 85-104. Available at:

https://www.researchgate.net/publication/278320928_A_Most_Efficient_Digital_Filter_

The_Two-Path_Recursive_All-Pass_Filter

[3] P. Vaidyanathan, Multirate Systems and Filter Banks, Prentice-Hall, Upper

Saddle River, New Jersey, 1993, pp. 89-90.

[4] S. Mitra, Digital Signal Processing, A computer-Based Approach, 4th Edition,

McGraw-Hill, New York, New York, 2011, pp. 462-464.

Appendix A: Allpass Filter Conversion Implementation Considerations

A-1: Restrictions on the Original Direct IIR Filter
To use this document's technique for converting a traditional IIR filter to an

efficient parallel-path allpass structure, the original IIR filter must:

* Be lowpass or highpass with no poles on or outside the unit cycle.

* Have a transfer function with numerator and denominator polynomials

 of equal and odd-order. (If the original IIR filter is even order

 the allpass coefficients will be complex-valued which negates the

http://www.emba.uvm.edu/~gmirchan/classes/EE275/Handouts_Ed4/Ch07(4e)Handouts/Ch7(1)Handouts_4e.pdf
https://www.researchgate.net/publication/278320928_A_Most_Efficient_Digital_Filter_The_Two-Path_Recursive_All-Pass_Filter
https://www.researchgate.net/publication/278320928_A_Most_Efficient_Digital_Filter_The_Two-Path_Recursive_All-Pass_Filter

Copyright © Richard Lyons 2019 4

 computational advantage of using allpass filters.)

* Have a maximum frequency magnitude response of one (unity).

* Have symmetrical or anti-symmetrical numerator coefficients.

Filters designed with MATLAB's ellip(), butter(), cheby1(), and cheby2() commands

satisfy the last two of the above restrictions.

A-2: Mathematical Considerations
The final multiplications by 1/2 at the right sides of Figures 1 and 2, that can be

implemented with a binary right shift, ensures that the parallel-path filter has a

maximum gain of one. Whether the two allpass parallel paths' outputs are added or

subtracted depends on whether the original IIR filter is lowpass or highpass.

In floating-point numerical implementations the original IIR and parallel-path

allpass filters in Figure 2 have identical frequency magnitude responses.

The good news is that the Figure 3 allpass sections maintain their allpass behavior

when, and have low frequency magnitude response sensitivity to, quantized

coefficients used as demonstrated on pages 712-713 of Reference [4].

A-3: Software Considerations
Figure A-1 shows the structures of the 1st- and 2nd-order allpass filters, as well

as the software commands needed to compute a single output sample. The underlined

operations in Figure A-1 perform the data shifts through the delay elements in

anticipation of the arrival of the next x(n) input sample.

z–1
y(n)

z–1+
–

d1

d2

x(n) B C

EF

–

+

c1

z–1

z–1

y(n)x(n)

E = x(n) + C(n)

F = d1*B(n) + d2*E

y(n) = C(n) + F

C(n+1) = B(n)

B(n+1) = x(n) –F

D = x1(n) –B(n);

y(n) = A(n) + c1*D;

A(n+1) = x(n);

B(n+1) = y(n);

B

A

D

2nd-order allpass section1st-order allpass section

Allpass sections

with notated

signal nodes

Software

commands

 FIGURE A-1: 1st- and 2nd-order allpass filters and their

 implementation software commands.

Appendix B: How the Standard IIR –To- Dual-Path Allpass

 Filter Conversion Process Works
Here we show how this 'IIR –to- dual-path allpass filter conversion' process works

by way of example. Let's start with a 5th-order lowpass IIR filter defined by the

MATLAB command:

 [b,a] = cheby1(5,0.2,0.15); % 0.2 dB passband ripple, .15 cutoff freq

The transfer function of this 5th-order IIR filter is:

IIR

IIR
IIR

()
()

()

Y z
H z

X z

Copyright © Richard Lyons 2019 5

1 2 3 4 5

1 2 3 4 5

0.0002 0.0008 0.0015 0.0015 0.0008 0.0002

1 4.0501 6.8238 5.9479 2.6745 0.4955

z z z z z

z z z z z

 (B-1)

Next, we compute the filter's five pole locations and plot them in Figure B-1(a).

(a)

Original IIR filter poles

These poles
assigned to Top,

A0(z), allpass
filter

These poles
assigned to

Bottom, A1(z),
allpass filter

(b)

Original IIR filter

–1 0 1

Real Part

–1

0

1

Im
a

g
.
P

a
rt

P1

P21

P22

P32

P31

 FIGURE B-1: 'Original IIR filter poles.

Those pole values, sorted from their smallest to their largest magnitudes, are:

 P1 = 0.8005

 P21 = 0.7989 - j0.2566

 P22 = 0.7989 + j0.2566

 P31 = 0.8259 - j0.4439

 P32 = 0.8259 + j0.4439

The real-valued pole P1 is assigned to the denominator coefficient of a 1st-order

allpass section. Because the original IIR filter is always odd-order, there will

always be a real-valued pole assigned to a 1st-order allpass section. The

denominator of that 1st-order allpass section's transfer function, in terms of z
-1
,

is (1 –P1z
-1
). So the denominator coefficients of the 1st-order allpass filter are

 1st-order allpass section denominator coeffs = [1, –P1] = [1 -0.8005].

The complex-conjugate pole pair P21/P22 are assigned to the denominator coefficient

of a 2nd-order allpass section. The denominator of that 2nd-order allpass section's

transfer function, in terms of z
-1
, is

(1 –P21z
-1
)(1 –P22z

-1
) = 1 –(P21+P22)z

-1
 + P21P22z

-2
. So the denominator coefficients

of this 2nd-order allpass filter are

 2nd-order allpass section denominator coeffs = [1, –(P21+P22), P21P22]

 = [1, -1.5978, 0.7041].

Copyright © Richard Lyons 2019 6

The complex-conjugate pole pair P31/P32 are assigned to the denominator coefficient

of another 2nd-order allpass section. The denominator of that 2nd-order allpass

section's transfer function, in terms of z
-1
, is

(1 –P31z
-1
)(1 –P32z

-1
) = 1 –(P31+P32)z

-1
 + P31P32z

-2
. So the denominator coefficients

of this 2nd-order allpass filter are

 2nd-order allpass section denominator coeffs = [1, –(P31+P32), P31P32]

 = [1, -1.6517, 0.8791].

So now, for this example, we have computed the denominator coefficients for a

single 1st-order allpass filter section and two 2nd-order allpass filter sections.

Those denominator coefficients are:

 [1, -0.8005] ------------- Single 1st-order for Top-Path A0(z) section

 [1, -1.5978, 0.7041] ----- First 2nd-order for Bottom-Path A1(z) section

 [1, -1.6517, 0.8791] ----- Second 2nd-order for Top-Path A0(z) section

Using the "pole interlacing property" as shown in Figure B-1(b), based on their

angles the alternate poles will be assigned to the top A0(z) and bottom A1(z) paths

of the dual-path allpass filter in this document's Figure 2 [3,4].

The results of using the "pole interlacing property" is shown in Figure B-2. Notice

how the dual-path allpass filter sections' numerator coefficients are their

denominator coefficients in reverse order. The numerator coefficients produce the

z-plane zeros shown in Figure B-2. The reversed-order coefficients ensure that the

zeros' locations are the reciprocals of the poles' locations. That reciprocal

property is necessary for the filter sections to have allpass frequency-domain

behavior.

Copyright © Richard Lyons 2019 7

1/2

x(n)
A0(z)

A1(z)

H2(z) =
1 –1.6517z–1 + 0.8791z–2

0.8791 –1.6517 z–1 + z–2

H1(z) =
1 –0.8005z–1

–0.8005 + z–1

H3(z) =
1 –1.5978z–1 + 0.7041z–2

0.7041 –1.5978 z–1 + z–2

y(n)

Real Part Im
ag

. P
ar

t

Top-Path, A0(z), allpass filter

–1 0 1
Real Part

–1

0

1

Im
a

g
.
P

a
rt

Real Part Im
ag

. P
ar

t

Bottom-Path, A1(z), Allpass filter

–1 0 1
Real Part

–1

0

1

Im
a

g
.
P

a
rt

Bottom-Path, A1(z), Allpass filter

Top-Path, A0(z), allpass filter

|A0(z)|

|A1(z)|

Pole P1 Conjugate Poles P31 and P32

Conjugate Poles P21 and P22

 FIGURE B-2: Result of the example 'IIR –to- dual-path

 allpass filter conversion'.

The frequency magnitude responses of the original IIR filter and the resultant

dual-path allpass filter are shown in Figure B-3.

Copyright © Richard Lyons 2019 8

0 0.2 0.2 0.3 0.4 0.5
Freq x fs

-80

-60

-40

-20

0

d
B

 FIGURE B-3: Frequency magnitude responses. Thick shaded curve

 for the original IIR filter, black dashed curve for

 the dual-path allpass filter.

Based on the networks in this document's Figure 3, our example dual-path allpass

filter in the center of Figure B-2 is implemented as shown in Figure B-4.

z–1 z–1+
–

–

+

z–1

z–1

 0.8791
 –1.6517

z–1 z–1+

–

 0.7041
 –1.5978

 –0.8005

x(n)
1/2

y(n)

 FIGURE B-4: Dual-path allpass filter implementation.

Appendix C: MATLAB Code To Compute Allpass Sections' Coefficients
The process of computing allpass sections' denominator coefficients comprises the

following steps:

1. Compute input IIR filter's poles' & zeros locations.

2. Determine if input IIR filter is lowpass or highpass.

3. Sort IIR filter's poles, based on their magnitudes, to compute

 allpass sections' denominator coeffs.

4. Find the 1st- and 2nd-order sections' denominator coeffs.

5. Sort 'Denoms' matrix into "Bottom_Path_Denoms" & "Top_Path_Denoms" using

 the "Pole Interlacing Property".

6. Partition the 'Top_Path_Denoms' into 1st- & 2nd-order sections (the

 Bottom_Path_Denoms will always be the desired 2nd-order sections).

7. Convolve Top filter sections' coeffs to enable User spectral plotting.

8. Convolve Bottom filter sections' coeffs to enable User spectral plotting.

Once we know the dual-path allpass filter sections' denominator coefficients, the

dual-path allpass filter sections' numerator coefficients are the denominator

coefficients in reverse order.

The MATLAB code to implement the above eight steps is the following:

Copyright © Richard Lyons 2019 9

function [Top_1stOrd_Denom,Top_2ndOrd_Denoms,Bottom_Denoms,...

 Filter_Type,Top_Casc_Denoms,Bottom_Casc_Denoms] ...

 = Allpass_Find_Coeffs(Numer_IIR, Denom_IIR)

% Computes dual-path allpass denominator coefficients,

% using the "Pole Interlace Property" of standard IIR filters, as

% described on page 462 of Sanjit Mitra's "Digital Signal Processing,

% A computer-Based Approach" book and page 89 of Vaidyanathan's

% Multirate Systems book.

% The input IIR filter must be an odd-order lowpass or highpass filter.

% The dual-path allpass numerator coefficients are the denominator

% coefficients, computed by this function, reversed in order.

% Inputs:

% Numer_IIR = numerator coeffs of an IIR lowpass or highpass filter.

% Denom_IIR = denominator coeffs of an IIR lowpass or highpass filter

% Outputs:

% Top_1stOrd_Denom = denominator coeffs of top path 1st-ord section

% Top_2ndOrd_Denoms = denominator coeffs of top path 2nd-ord sections.

% Bottom_Denoms = denominator coeffs of bottom path sections.

% Filter_Type = Original IIR filter type: 'Lowpass' or 'Higpass'.

% Top_Casc_Denom = Top path cascaded (convolved) denominator

% coeffs (used for allpass filter freq response plotting).

% Bottom_Casc_Denom = Bottom path cascaded (convolved) denominator

% coeffs (used for allpass filter freq response plotting).

% ** Example **

% [b, a] = cheby1(5, .2, .15); % 5th-order lowpass IIR filter

% [Top_1stOrd_Denom, Top_2ndOrd_Denoms, Bottom_Denoms,...

% Filter_Type, Top_Casc_Denoms, Bottom_Casc_Denoms] ...

% = Allpass_Find_Coeffs(Numer_IIR, Denom_IIR)

% ** Example Results **

% Top_1stOrd_Denom = 1.0000 -0.8005

% Top_2ndOrd_Denoms = 1.0000 -1.6517 0.8791

% Bottom_Denoms = 1.0000 -1.5978 0.7041

% Filter_Type = Lowpass

% Top_Casc_Denom = 1.0000 -2.4523 2.2014 -0.7038

% Bottom_Casc_Denom = 1.0000 -1.5978 0.7041

 % Rick Lyons, May, 2019

% Compute Input IIR filter's poles' & zeros locations

IIR_Poles = roots(Denom_IIR);

IIR_Zeros = roots(Numer_IIR);

% Determine if input IIR filter is lowpass or highpass

if mean(real(IIR_Poles)) > mean(real(IIR_Zeros))

 Filter_Type = 'Lowpass';

else

 Filter_Type = 'Higpass';

end

% Sort IIR filter's poles, based on their magnitudes, to compute

% allpass sections' denominator coeffs

Sorted_Poles = sort(IIR_Poles);

Num_Poles = length(Sorted_Poles);

% Now find the 1st- and 2nd-order sections' denominator coeffs

% based on the single real pole and the complex conjugate pole pairs

 % Compute 1st-order section's denominator coeffs

 Denoms(1,:) = [1, -Sorted_Poles(1), 0];

Copyright © Richard Lyons 2019 10

 % Compute 2nd-order sections' denominator coeffs

 for K = 1:(Num_Poles-1)/2

 Denoms(K+1,:) = [1, -(Sorted_Poles(2*K)+Sorted_Poles(2*K+1)), ...

 Sorted_Poles(2*K)*Sorted_Poles(2*K+1)];

 end

% Sort 'Denoms' matrix into "Bottom_Denoms" & "Top_Denoms"

% using the "Pole Interlace Property".

[Number_of_Demon_Rows,Temp] = size(Denoms); % Nu rows in Demons matrix

Top_Denoms = []; % Initializ

Bottom_Denoms = []; % Initialize

 % Perform allpass pole interlacing based on whether the

 % variable 'Number_of_Demon_Rows' is an odd or even number

 if Number_of_Demon_Rows == 2*floor(Number_of_Demon_Rows/2)

 % Number_of_Demon_Rows is even

 Swap = 'N';

 for K = 1:ceil(Number_of_Demon_Rows/2)

 Top_Denoms(K,:) = Denoms(K+(K-1),:);

 end

 for K = 1:ceil(Number_of_Demon_Rows/2)

 Bottom_Denoms(K,:) = Denoms(2*K,:);

 end

 else

 % Number_of_Demon_Rows is odd

 Swap = 'Y';

 for K = 1:ceil(Number_of_Demon_Rows/2)

 Top_Denoms(K,:) = Denoms(K+(K-1),:);

 end

 for K = 1:floor(Number_of_Demon_Rows/2)

 Bottom_Denoms(K,:) = Denoms(2*K,:);

 end

 end

%%%

% Break 'Top_Denoms' into 1st- & 2nd-order sections

Top_1stOrd_Denom = Top_Denoms(1,1:2); % Eliminate zero coeff

Top_2ndOrd_Denoms = Top_Denoms(2:end, 1:3); % 2nd, 3rd, 4th,... rows

 % Check, and correct, if no Top 2nd-order denominators

 Size_of_Top_Denoms = size(Top_Denoms);

 if Size_of_Top_Denoms(1) == 1 % 'Top_Denoms' has no 2nd-order parts

 disp('Allpass Top-path is 1st-order only (no 2nd-order sections)')

 Top_2ndOrd_Denoms = [0, 0, 0];

 else,end

%%%

% Convolve Top filter sections' coeffs for spectral plotting

%%%

%Top_Casc_Denoms = Top_Denoms(1,1:2);

Top_Casc_Denoms = Top_1stOrd_Denom;

[Top, Temp] = size(Top_Denoms); % Numb of 'Top_Denoms' rows

for P = 2:Top

 %Top_Denoms(P,:);

 Top_Casc_Denoms = conv(Top_Casc_Denoms, ...

 Top_Denoms(P,:));

end

%%%

%%%

Copyright © Richard Lyons 2019 11

% Convolve Bottom filter sections' coeffs for spectral plotting.

%%%

%Bottom_Casc_Denoms = [1];

Bottom_Casc_Denoms = Bottom_Denoms(1,:);

[Bot, Temp] = size(Bottom_Denoms);

for Q = 2:Bot

 Bottom_Casc_Denoms = conv(Bottom_Casc_Denoms, ...

 Bottom_Denoms(Q,:));

end

