
10 Sept/Oct 2002

8900 Marybank Dr
Austin, TX 78750
gerald@sixthmarket.com

A Software-Defined Radio
for the Masses, Part 2

By Gerald Youngblood, AC5OG

Come learn how to use a PC sound card to enter

the wonderful world of digital signal processing.

P

art 1 gave a general description
of digital signal processing
(DSP) in software-defined ra-

dios (SDRs).1 It also provided an over-
view of a full-featured radio that uses
a personal computer to perform all
DSP functions. This article begins de-
sign implementation with a complete
description of software that provides
a full-duplex interface to a standard
PC sound card.

To perform the magic of digital sig-
nal processing, we must be able to con-
vert a signal from analog to digital and
back to analog again. Most amateur
experimenters already have this ca-

1Notes appear on page 18.

pability in their shacks and many
have used it for slow-scan television
or the new digital modes like PSK31.

Part 1 discussed the power of
quadrature signal processing using in-
phase (I) and quadrature (Q) signals
to receive or transmit using virtually
any modulation method. Fortunately,
all modern PC sound cards offer the
perfect method for digitizing the I and
Q signals. Since virtually all cards to-
day provide 16-bit stereo at 44-kHz
sampling rates, we have exactly what
we need capture and process the sig-
nals in software. Fig 1 illustrates a
direct quadrature-conversion mixer
connection to a PC sound card.

This article discusses complete
source code for a DirectX sound-card
interface in Microsoft Visual Basic.
Consequently, the discussion assumes
that the reader has some fundamen-

tal knowledge of high-level language
programming.

Sound Card and PC Capabilities
Very early PC sound cards were low-

performance, 8-bit mono versions. To-
day, virtually all PCs come with
16-bit stereo cards of sufficient quality
to be used in a software-defined radio.
Such a card will allow us to demodu-
late, filter and display up to approxi-
mately a 44-kHz bandwidth, assuming
a 44-kHz sampling rate. (The band-
width is 44 kHz, rather than 22 kHz,
because the use of two channels effec-
tively doubles the sampling rate—Ed.)
For high-performance applications, it is
important to select a card that offers a
high dynamic range—on the order of
90 dB. If you are just getting started,
most PC sound cards will allow you to
begin experimentation, although they

mailto:gerald@sixthmarket.com

 Sept/Oct 2002 11

may offer lower performance.
The best 16-bit price-to-perfor-

mance ratio I have found at the time
of this article is the Santa Cruz 6-
channel DSP Audio Accelerator from
Turtle Beach Inc (www.tbeach.com).
It offers four 18-bit internal analog-
to-digital (A/D) input channels and six
20-bit digital-to-analog (D/A) output
channels with sampling rates up to
48 kHz. The manufacturer specifies a
96-dB signal-to-noise ratio (SNR) and
better than –91 dB total harmonic dis-
tortion plus noise (THD+N). Crosstalk
is stated to be –105 dB at 100 Hz. The
Santa Cruz card can be purchased
from online retailers for under $70.

Each bit on an A/D or D/A converter
represents 6 dB of dynamic range, so
a 16-bit converter has a theoretical
limit of 96 dB. A very good converter
with low-noise design is required to
achieve this level of performance.
Many 16-bit sound cards provide no
more than 12-14 effective bits of dy-
namic range. To help achieve higher
performance, the Santa Cruz card uses
an 18-bit A/D converter to deliver
the 96 dB dynamic range (16-bit)
specification.

A SoundBlaster 64 also provides
reasonable performance on the order
of 76 dB SNR according to PC AV Tech
at www.pcavtech.com. I have used
this card with good results, but I much
prefer the Santa Cruz card.

The processing power needed from
the PC depends greatly on the signal
processing required by the application.
Since I am using very-high-perfor-
mance filters and large fast-Fourier
transforms (FFTs), my applications
require at least a 400-MHz Pentium
II processor with a minimum of
128 MB of RAM. If you require less
performance from the software, you
can get by with a much slower ma-
chine. Since the entry level for new
PCs is now 1 GHz, many amateurs
have ample processing power avail-
able.

Microsoft DirectX versus
Windows Multimedia

Digital signal processing using a PC
sound card requires that we be able to
capture blocks of digitized I and Q data
through the stereo inputs, process those
signals and return them to the sound-
card outputs in pseudo real time. This
is called full duplex. Unfortunately,
there is no high-level software interface
that offers the capabilities we need for
the SDR application.

Microsoft now provides two appli-
cation programming interfaces2 (APIs)
that allow direct access to the sound
card under C++ and Visual Basic. The
original interface is the Windows Mul-

Fig 1—Direct quadrature conversion mixer to sound-card interface used in the author’s
prototype.

Fig 2—DirectSoundCaptureBuffer and DirectSoundBuffer circular buffer layout.

timedia system using the Waveform
Audio API. While my early work was
done with the Waveform Audio API, I
later abandoned it for the higher per-
formance and simpler interface
DirectX offers. The only limitation I
have found with DirectX is that it does
not currently support sound cards
with more than 16-bits of resolution.
For 24-bit cards, Windows Multimedia
is required. While the Santa Cruz card
supports 18-bits internally, it presents
only 16-bits to the interface. For in-
formation on where to download the
DirectX software development kit
(SDK) see Note 2.

allows the simultaneous capture and
playback of two or more audio chan-
nels (stereo). Unfortunately, there is
no high-level code in Visual Basic or
C++ to directly support full duplex as
required in an SDR. We will therefore
have to write code to directly control
the card through the DirectX API.

DirectX internally manages all low-
level buffers and their respective
interfaces to the sound-card hard-
ware. Our code will have to manage
the high-level DirectX buffers
(called DirectSoundBuffer and
DirectSoundCaptureBuffer) to pro-
vide uninterrupted operation in
a multitasking system. The Direct-
SoundCaptureBuffer stores the digi-
tized signals from the stereo

Circular Buffer Concepts
A typical full-duplex PC sound card

http://www.tbeach.com
http://www.pcavtech.com

12 Sept/Oct 2002

A/D converter in a circular buffer and
notifies the application upon the
occurrence of predefined events. Once
captured in the buffer, we can read
the data, perform the necessary modu-
lation or demodulation functions us-
ing DSP and send the data to the
DirectSoundBuffer for D/A conversion
and output to the speakers or trans-
mitter.

To provide smooth operation in a
multitracking system without audio
popping or interruption, it will be nec-
essary to provide a multilevel buffer for
both capture and playback. You may
have heard the term double buffering.
We will use double buffering in the
DirectSoundCaptureBuffer
and quadruple buffering in the
DirectSoundBuffer. I found that the
quad buffer with overwrite detection
was required on the output to prevent
overwriting problems when the system
is heavily loaded with other applica-
tions. Figs 2A and 2B illustrate the
concept of a circular double buffer,
which is used for the Direct-
SoundCaptureBuffer. Although the
buffer is really a linear array in
memory, as shown in Fig 2B, we can
visualize it as circular, as illustrated in
Fig 2A. This is so because DirectX man-
ages the buffer so that as soon as each
cursor reaches the end of the array, the
driver resets the cursor to the begin-
ning of the buffer.

The DirectSoundCaptureBuffer is
broken into two blocks, each equal in
size to the amount of data to be cap-
tured and processed between each
event. Note that an event is much like
an interrupt. In our case, we will use
a block size of 2048 samples. Since we
are using a stereo (two-channel) board
with 16 bits per channel, we will be
capturing 8192 bytes per block (2048
samples × 2 channels × 2 bytes). There-
fore, the DirectSoundCaptureBuffer
will be twice as large (16,384 bytes).

Since the DirectSoundCapture
Buffer is divided into two data blocks,
we will need to send an event notifica-
tion to the application after each block
has been captured. The DirectX driver
maintains cursors that track the posi-
tion of the capture operation at all
times. The driver provides the means
of setting specific locations within the
buffer that cause an event to trigger,
thereby telling the application to re-
trieve the data. We may then read the
correct block directly from the
DirectSoundCaptureBuffer segment
that has been completed.

Referring again to Fig 2A, the two
cursors resemble the hands on a clock
face rotating in a clockwise direction.
The capture cursor, lPlay, represents
the point at which data are currently

being captured. (I know that sounds
backward, but that is how Microsoft
defined it.) The read cursor, lWrite,
trails the capture cursor and indicates
the point up to which data can safely
be read. The data after lWrite and up
to and including lPlay are not neces-
sarily good data because of hardware
buffering. We can use the lWrite cur-
sor to trigger an event that tells the
software to read each respective block
of data, as will be discussed later in
the article. We will therefore receive
two events per revolution of the circu-
lar buffer. Data can be captured into
one half of the buffer while data are
being read from the other half.

Fig 2C illustrates the Direct-
SoundBuffer, which is used to output
data to the D/A converters. In this case,
we will use a quadruple buffer to allow
plenty of room between the currently
playing segment and the segment be-
ing written. The play cursor, lPlay, al-
ways points to the next byte of data to
be played. The write cursor, lWrite, is
the point after which it is safe to write
data into the buffer. The cursors may
be thought of as rotating in a clockwise
motion just as the capture cursors do.
We must monitor the location of the
cursors before writing to buffer loca-
tions between the cursors to prevent

overwriting data that have already
been committed to the hardware for
playback.

Now let’s consider how the data
maps from the DirectSoundCapture-
Buffer to the DirectSoundBuffer. To
prevent gaps or pops in the sound due
to processor loading, we will want to
fill the entire quadruple buffer before
starting the playback looping. DirectX
allows the application to set the start-
ing point for the lPlay cursor and to
start the playback at any time.
Fig 3 shows how the data blocks map
sequentially from the Direct-
SoundCaptureBuffer to the Direct-
SoundBuffer. Block 0 from the
DirectSoundCaptureBuffer is trans-
ferred to Block 0 of the Direct-
SoundBuffer. Block 1 of the
DirectSoundCaptureBuffer is next
transferred to Block 1 of the
DirectSoundBuffer and so forth. The
subsequent source-code examples show
how control of the buffers is accom-
plished.

Fig 3—Method for mapping the
DirectSoundCaptureBuffer to
the DirectSoundBuffer.

Fig 4—Registration of the DirectX8 for Visual Basic Type Library in the Visual
Basic IDE.

Full Duplex, Step-by-Step
The following sections provide a

detailed discussion of full-duplex
DirectX implementation. The example
code captures and plays back a stereo
audio signal that is delayed by four

 Sept/Oct 2002 13

Option Explicit

‘Define Constants
Const Fs As Long = 44100 ‘Sampling frequency Hz
Const NFFT As Long = 4096 ‘Number of FFT bins
Const BLKSIZE As Long = 2048 ‘Capture/play block size
Const CAPTURESIZE As Long = 4096 ‘Capture Buffer size

‘Define DirectX Objects
Dim dx As New DirectX8 ‘DirectX object
Dim ds As DirectSound8 ‘DirectSound object
Dim dspb As DirectSoundPrimaryBuffer8 ‘Primary buffer object
Dim dsc As DirectSoundCapture8 ‘Capture object
Dim dsb As DirectSoundSecondaryBuffer8 ‘Output Buffer object
Dim dscb As DirectSoundCaptureBuffer8 ‘Capture Buffer object

‘Define Type Definitions
Dim dscbd As DSCBUFFERDESC ‘Capture buffer description
Dim dsbd As DSBUFFERDESC ‘DirectSound buffer description
Dim dspbd As WAVEFORMATEX ‘Primary buffer description
Dim CapCurs As DSCURSORS ‘DirectSound Capture Cursor
Dim PlyCurs As DSCURSORS ‘DirectSound Play Cursor

‘Create I/O Sound Buffers
Dim inBuffer(CAPTURESIZE) As Integer ‘Demodulator Input Buffer
Dim outBuffer(CAPTURESIZE) As Integer ‘Demodulator Output Buffer

‘Define pointers and counters
Dim Pass As Long ‘Number of capture passes
Dim InPtr As Long ‘Capture Buffer block pointer
Dim OutPtr As Long ‘Output Buffer block pointer
Dim StartAddr As Long ‘Buffer block starting address
Dim EndAddr As Long ‘Ending buffer block address
Dim CaptureBytes As Long ‘Capture bytes to read

‘Define loop counter variables for timing the capture event cycle
Dim TimeStart As Double ‘Start time for DirectX8Event loop
Dim TimeEnd As Double ‘Ending time for DirectX8Event loop
Dim AvgCtr As Long ‘Counts number of events to average
Dim AvgTime As Double ‘Stores the average event cycle time

‘Set up Event variables for the Capture Buffer
Implements DirectXEvent8 ‘Allows DirectX Events
Dim hEvent(1) As Long ‘Handle for DirectX Event
Dim EVNT(1) As DSBPOSITIONNOTIFY ‘Notify position array
Dim Receiving As Boolean ‘In Receive mode if true
Dim FirstPass As Boolean ‘Denotes first pass from Start

Fig 5—Declaration of variables, buffers, events and objects. This code is located in the General section of the module or form.

capture periods through buffering. You
should refer to the “DirectX Audio”
section of the DirectX 8.0 Program-
mers Reference that is installed with
the DirectX software developer’s kit
(SDK) throughout this discussion. The
DSP code will be discussed in the next
article of this series, which will dis-
cuss the modulation and demodula-
tion of quadrature signals in the SDR.
Here are the steps involved in creat-
ing the DirectX interface:
• Install DirectX runtime and SDK.

• Add a reference to DirectX8 for
Visual Basic Type Library.

• Define Variables, I/O buffers and
DirectX objects.

• Implement DirectX8 events and
event handles.

• Create the audio devices.
• Create the DirectX events.
• Start and stop capture and play buff-

ers.
• Process the DirectXEvent8.
• Fill the play buffer before starting

playback.

• Detect and correct overwrite errors.
• Parse the stereo buffer into I and Q

signals.
• Destroy objects and events on exit.

Complete functional source code for
the DirectX driver written in Microsoft
Visual Basic is provided for download
from the QEX Web site.3

Install DirectX and Register it
within Visual Basic

The first step is to download the
DirectX driver and the DirectX SDK

14 Sept/Oct 2002

‘Set up the DirectSound Objects and the Capture and Play Buffers
Sub CreateDevices()

 On Local Error Resume Next

 Set ds = dx.DirectSoundCreate(vbNullString) ‘DirectSound object
 Set dsc = dx.DirectSoundCaptureCreate(vbNullString) ‘DirectSound Capture

 ‘Check to se if Sound Card is properly installed
 If Err.Number <> 0 Then
 MsgBox “Unable to start DirectSound. Check proper sound card installation”
 End
 End If

 ‘Set the cooperative level to allow the Primary Buffer format to be set
 ds.SetCooperativeLevel Me.hWnd, DSSCL_PRIORITY

 ‘Set up format for capture buffer
 With dscbd
 With .fxFormat
 .nFormatTag = WAVE_FORMAT_PCM
 .nChannels = 2 ‘Stereo
 .lSamplesPerSec = Fs ‘Sampling rate in Hz
 .nBitsPerSample = 16 ’16 bit samples
 .nBlockAlign = .nBitsPerSample / 8 * .nChannels
 .lAvgBytesPerSec = .lSamplesPerSec * .nBlockAlign
 End With
 .lFlags = DSCBCAPS_DEFAULT
 .lBufferBytes = (dscbd.fxFormat.nBlockAlign * CAPTURESIZE) ‘Buffer Size
 CaptureBytes = .lBufferBytes \ 2 ‘Bytes for 1/2 of capture buffer
 End With

 Set dscb = dsc.CreateCaptureBuffer(dscbd) ‘Create the capture buffer

 ‘ Set up format for secondary playback buffer
 With dsbd
 .fxFormat = dscbd.fxFormat
 .lBufferBytes = dscbd.lBufferBytes * 2 ‘Play is 2X Capture Buffer Size
 .lFlags = DSBCAPS_GLOBALFOCUS Or DSBCAPS_GETCURRENTPOSITION2
 End With

 dspbd = dsbd.fxFormat ‘Set Primary Buffer format
 dspb.SetFormat dspbd ‘to same as Secondary Buffer

 Set dsb = ds.CreateSoundBuffer(dsbd) ‘Create the secondary buffer

End Sub

Fig 6—Create the DirectX capture and playback devices.

from the Microsoft Web site (see Note
3). Once the driver and SDK are in-
stalled, you will need to register the
DirectX8 for Visual Basic Type Li-
brary within the Visual Basic devel-
opment environment.

If you are building the project from
scratch, first create a Visual Basic
project and name it “Sound.” When the
project loads, go to the Project Menu/
References, which loads the form
shown in Fig 4. Scroll through Avail-
able References until you locate the

DirectX8 for Visual Basic Type Library
and check the box. When you press
“OK,” the library is registered.

Define Variables, Buffers and
DirectX Objects

Name the form in the Sound project
frmSound. In the General section of
frmSound, you will need to declare all
of the variables, buffers and DirectX
objects that will be used in the driver
interface. Fig 5 provides the code that
is to be copied into the General sec-

tion. All definitions are commented in
the code and should be self-explana-
tory when viewed in conjunction with
the subroutine code.

Create the Audio Devices
We are now ready to create the

DirectSound objects and set up the
format of the capture and play buff-
ers. Refer to the source code in Fig 6
during the following discussion.

The first step is to create the
DirectSound and DirectSoundCapture

 Sept/Oct 2002 15

Fig 7—Create the DirectX events.

‘Set events for capture buffer notification at 0 and 1/2
Sub SetEvents()

 hEvent(0) = dx.CreateEvent(Me) ‘Event handle for first half of buffer
 hEvent(1) = dx.CreateEvent(Me) ‘Event handle for second half of buffer

 ‘Buffer Event 0 sets Write at 50% of buffer
 EVNT(0).hEventNotify = hEvent(0)
 EVNT(0).lOffset = (dscbd.lBufferBytes \ 2) - 1 ‘Set event to first half of capture buffer

 ‘Buffer Event 1 Write at 100% of buffer
 EVNT(1).hEventNotify = hEvent(1)
 EVNT(1).lOffset = dscbd.lBufferBytes - 1 ‘Set Event to second half of capture buffer

 dscb.SetNotificationPositions 2, EVNT() ‘Set number of notification positions to 2

End Sub

‘Create Devices and Set the DirectX8Events
Private Sub Form_Load()
 CreateDevices ‘Create DirectSound devices
 SetEvents ‘Set up DirectX events
End Sub

‘Shut everything down and close application
Private Sub Form_Unload(Cancel As Integer)

 If Receiving = True Then
 dsb.Stop ‘Stop Playback
 dscb.Stop ‘Stop Capture
 End If

 Dim i As Integer
 For i = 0 To UBound(hEvent) ‘Kill DirectX Events
 DoEvents
 If hEvent(i) Then dx.DestroyEvent hEvent(i)
 Next

 Set dx = Nothing ‘Destroy DirectX objects
 Set ds = Nothing
 Set dsc = Nothing
 Set dsb = Nothing
 Set dscb = Nothing

 Unload Me

End Sub

Fig 8—Create and destroy the DirectSound Devices and events.

objects. We then check for an error to
see if we have a compatible sound card
installed. If not, an error message would
be displayed to the user. Next, we set
the cooperative level DSSCL_ PRIOR-
ITY to allow the Primary Buffer format
to be set to the same as that of the Sec-
ondary Buffer. The code that follows sets
up the DirectSoundCaptureBuffer-

Description format and creates the
DirectSoundCaptureBuffer object. The
format is set to 16-bit stereo at the sam-
pling rate set by the constant Fs.

Next, the DirectSoundBuffer-
Description is set to the same format
as the DirectSoundCaptureBuffer-
Description. We then set the Primary
Buffer format to that of the Second-

ary Buffer before creating the
DirectSoundBuffer object.

Set the DirectX Events
As discussed earlier, the

DirectSoundCaptureBuffer is divided
into two blocks so that we can read
from one block while capturing to the
other. To do so, we must know when

16 Sept/Oct 2002

Fig 9—Start and stop the capture/playback buffers.

‘Turn Capture/Playback On
Private Sub cmdOn_Click()
 dscb.Start DSCBSTART_LOOPING ‘Start Capture Looping
 Receiving = True ‘Set flag to receive mode
 FirstPass = True ‘This is the first pass after
Start
 OutPtr = 0 ‘Starts writing to first buffer
End Sub

‘Turn Capture/Playback Off
Private Sub cmdOff_Click()
 Receiving = False ‘Reset Receiving flag
 FirstPass = False ‘Reset FirstPass flag
 dscb.Stop ‘Stop Capture Loop
 dsb.Stop ‘Stop Playback Loop
End Sub

DirectX has finished writing to a
block. This is accomplished using the
DirectXEvent8. Fig 7 provides the code
necessary to set up the two events that
occur when the lWrite cursor has
reached 50% and 100% of the
DirectSoundCaptureBuffer.

We begin by creating the two event
handles hEvent(0) and hEvent(1). The
code that follows creates a handle for
each of the respective events and sets
them to trigger after each half of the
DirectSoundCaptureBuffer is filled.
Finally, we set the number of notifica-
tion positions to two and pass the
name of the EVNT() event handle ar-
ray to DirectX.

The CreateDevices and SetEvents
subroutines should be called from the
Form_Load() subroutine. The Form_
Unload subroutine must stop capture
and playback and destroy all of the
DirectX objects before shutting down.
The code for loading and unloading is
shown in Fig 8.

Starting and Stopping
Capture/Playback

Fig 9 illustrates how to start and
stop the DirectSoundCaptureBuffer.
The dscb.Start DSCBSTART_ LOOP-
ING command starts the Direct-
SoundCaptureBuffer in a continuous
circular loop. When it fills the first half
of the buffer, it triggers the DirectX
Event8 subroutine so that the data
can be read, processed and sent to the
DirectSoundBuffer. Note that the
DirectSoundBuffer has not yet been
started since we will quadruple buffer
the output to prevent processor load-
ing from causing gaps in the output.
The FirstPass flag tells the event to
start filling the DirectSoundBuffer for
the first time before starting the buffer
looping.

Processing the Direct-XEvent8
Once we have started the Direct-

SoundCaptureBuffer looping, the
completion of each block will cause the
DirectX Event8 code in Fig 10 to be
executed. As we have noted, the events
will occur when 50% and 100% of the
buffer has been filled with data. Since
the buffer is circular, it will begin
again at the 0 location when the buffer
is full to start the cycle all over again.
Given a sampling rate of 44,100 Hz
and 2048 samples per capture block,
the block rate is calculated to be
44,100/2048 = 21.53 blocks/s or one
block every 46.4 ms. Since the quad
buffer is filled before starting playback
the total delay from input to output is
4 × 46.4 ms = 185.6 ms.

The DirectX Event8_DXCallback
event passes the eventid as a variable.
The case statement at the beginning of

the code determines from the eventid,
which half of the DirectSoundCapture-
Buffer has just been filled. With that
information, we can calculate the start-
ing address for reading each block from
the DirectSoundCaptureBuffer to the
inBuffer() array with the dscb.
ReadBuffer command. Next, we simply
pass the inBuffer() to the external DSP
subroutine, which returns the processed
data in the outBuffer() array.

Then we calculate the StartAddr
and EndAddr for the next write loca-
tion in the DirectSoundBuffer. Before
writing to the buffer, we first check to
make sure that we are not writing
between the lWrite and lPlay cursors,
which will cause portions of the buffer
to be overwritten that have already
been committed to the output. This
will result in noise and distortion in
the audio output. If an error occurs,
the FirstPass flag is set to true and
the pointers are reset to zero so that
we flush the DirectSoundBuffer and
start over. This effectively performs an
automatic reset when the processor is
overloaded, typically because of graph-
ics intensive applications running
alongside the SDR application.

If there are no overwrite errors, we
write the outBuffer() array that was
returned from the DSP routine to the
next StartAddr to EndAddr in the
DirectSoundBuffer. Important note: In
the sample code, the DSP subroutine
call is commented out and the
inBuffer() array is passed directly to
the DirectSoundBuffer for testing of
the code. When the FirstPass flag is
set to True, we capture and write four
data blocks before starting playback
looping with the .SetCurrentPosition
0 and .Play DSBPLAY_LOOPING
commands.

The subroutine calls to StartTimer
and StopTimer allow the average com-
putational time of the event loop to be
displayed in the immediate window.
This is useful in measuring the effi-

ciency of the DSP subroutine code that
is called from the event. In normal
operation, these subroutine calls
should be commented out.

Coming Up Next
In the next article, we will discuss

in detail the DSP code that provides

Parsing the Stereo Buffer
into I and Q Signals

One more step that is required to
use the captured signal in the DSP
subroutine is to separate or parse the
left and right channel data into the I
and Q signals, respectively. This can
be accomplished using the code in
Fig 11. In 16-bit stereo, the left and
right channels are interleaved in the
inBuffer() and outBuffer(). The code
simply copies the alternating 16-bit
integer values to the RealIn()), (same
as I) and ImagIn(), (same as Q) buff-
ers respectively. Now we are ready to
perform the magic of digital signal
processing that we will discuss in the
next article of the series.

Testing the Driver
To test the driver, connect an audio

generator—or any other audio device,
such as a receiver—to the line input of
the sound card. Be sure to mute line-
in on the mixer control panel so that
you will not hear the audio directly
through the operating system. You can
open the mixer by double clicking on
the speaker icon in the lower right cor-
ner of your Windows screen. It is also
accessible through the Control Panel.

Now run the Sound application and
press the On button. You should hear
the audio playing through the driver.
It will be delayed about 185 ms from
the incoming audio because of the qua-
druple buffering. You can turn the
mute control on the line-in mixer on
and off to test the delay. It should
sound like an echo. If so, you know that
everything is operating properly.

 Sept/Oct 2002 17

‘Process the Capture events, call DSP routines, and output to Secondary Play Buffer
Private Sub DirectXEvent8_DXCallback (ByVal eventid As Long)

 StartTimer ‘Save loop start time

 Select Case eventid ‘Determine which Capture Block is ready
 Case hEvent(0)
 InPtr = 0 ‘First half of Capture Buffer
 Case hEvent(1)
 InPtr = 1 ‘Second half of Capture Buffer
 End Select

 StartAddr = InPtr * CaptureBytes ‘Capture buffer starting address

 ‘Read from DirectX circular Capture Buffer to inBuffer
 dscb.ReadBuffer StartAddr, CaptureBytes, inBuffer(0), DSCBLOCK_DEFAULT

 ‘DSP Modulation/Demodulation - NOTE: THIS IS WHERE THE DSP CODE IS CALLED
‘ DSP inBuffer, outBuffer

 StartAddr = OutPtr * CaptureBytes ‘Play buffer starting address
 EndAddr = OutPtr + CaptureBytes - 1 ‘Play buffer ending address

 With dsb ‘Reference DirectSoundBuffer

 .GetCurrentPosition PlyCurs ‘Get current Play position

 ‘If true the write is overlapping the lWrite cursor due to processor loading
 If PlyCurs.lWrite >= StartAddr _
 And PlyCurs.lWrite <= EndAddr Then
 FirstPass = True ‘Restart play buffer
 OutPtr = 0
 StartAddr = 0
 End If

 ‘If true the write is overlapping the lPlay cursor due to processor loading
 If PlyCurs.lPlay >= StartAddr _
 And PlyCurs.lPlay <= EndAddr Then
 FirstPass = True ‘Restart play buffer
 OutPtr = 0
 StartAddr = 0
 End If

 ‘Write outBuffer to DirectX circular Secondary Buffer. NOTE: writing inBuffer causes
direct pass through. Replace
 ‘with outBuffer below to when using DSP subroutine for modulation/demodulation
 .WriteBuffer StartAddr, CaptureBytes, inBuffer(0), DSBLOCK_DEFAULT

 OutPtr = IIf(OutPtr >= 3, 0, OutPtr + 1) ‘Counts 0 to 3

 If FirstPass = True Then ‘On FirstPass wait 4 counts before starting
 Pass = Pass + 1 ‘the Secondary Play buffer looping at 0
 If Pass = 3 Then ‘This puts the Play buffer three Capture cycles
 FirstPass = False ‘after the current one
 Pass = 0 ‘Reset the Pass counter
 .SetCurrentPosition 0 ‘Set playback position to zero
 .Play DSBPLAY_LOOPING ‘Start playback looping
 End If
 End If

 End With

 StopTimer ‘Display average loop time in immediate window

End Sub Fig 10—Process the DirectXEvent8 event. Note that the example code passes the inBuffer() directly to the DirectSoundBuffer
without processing. The DSP subroutine call has been commented out for this illustration so that the audio input to the sound
card will be passed directly to the audio output with a 185 ms delay. Destroy objects and events on exit.

18 Sept/Oct 2002

modulation and demodulation of SSB
signals. Included will be source code
for implementing ultra-high-perfor-
mance variable band-pass filtering in
the frequency domain, offset baseband
IF processing and digital AGC.

Erase RealIn, ImagIn

 For S = 0 To CAPTURESIZE - 1 Step 2 ‘Copy I to RealIn and Q to ImagIn
 RealIn(S \ 2) = inBuffer(S)
 ImagIn(S \ 2) = inBuffer(S + 1)
 Next S

Fig 11—Code for parsing the stereo inBuffer() into in-phase and quadrature signals. This code must be imbedded into the DSP
subroutine.

��

Notes
1G. Youngblood, AC5OG, “A Software-

Defined Radio for the Masses: Part 1,”
QEX, July/Aug 2002, pp 13-21.

2Information on both DirectX and Windows
Multimedia programming can be accessed
on the Microsoft Developer Network (MSDN)
Web site at www.msdn. microsoft.com/li-
brary. To download the DirectX Software
Development Kit go to msdn.microsoft.
com/downloads/ and click on “Graphics and
Multimedia” in the left-hand navigation win-
dow. Next click on “DirectX” and then
“DirectX 8.1” (or a later version if available).

The DirectX runtime driver may be down-
loaded from www.microsoft.com/windows/
directx/downloads/default.asp.

3You can download this package from the
ARRL Web www.arrl.org/qexfiles/. Look
for 0902Youngblood.zip.

http://www.msdn.microsoft.com/library
http://www.msdn.microsoft.com/library
http://msdn.microsoft.com/downloads/
http://msdn.microsoft.com/downloads/
http://www.microsoft.com/windows/directx/downloads/default.asp
http://www.microsoft.com/windows/directx/downloads/default.asp
http://www.arrl.org/qexfiles/

