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A Software-Defined Radio 
for the Masses, Part 3 

By Gerald Youngblood, AC5OG 

Learn how to use DSP to make the PC sound-card interface 

from Part 2 into a functional software-defined radio. 

We also explore a powerful filtering technique 

called FFT fast-convolution filtering. 

P 1art 1 of this series provided a 
general description of digital 
signal processing (DSP) as used 

in software-defined radios (SDRs) and 
included an overview of a full-featured 
radio that uses a PC to perform all 
DSP and control functions. Part 22 
described Visual Basic source code 
that implements a full-duplex quadra-
ture interface to a PC sound card. 

As previously described, in-phase 
(I) and quadrature (Q) signals give the 
ability to modulate or demodulate vir-
tually any type of signal. The Tayloe 
Detector, described in Part 1, is a 
simple method of converting a modu-
lated RF signal to baseband in quadra-
ture, so that it can be presented to the 
left and right inputs of a stereo PC 

1Notes appear on page 36. 

sound card for signal processing. The 
full-duplex DirectX8 interface, de-
scribed in Part 2, accomplishes the 
input and output of the sampled 

quadrature signals. The sound-card 
interface provides an input buffer ar-
ray, inBuffer(), and an output buffer 
array, outBuffer(), through which the 

Fig 1—DSP software architecture block diagram. 
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Public Const Fs As Long = 44100 ‘Sampling frequency in samples per 
‘second 

Public Const NFFT As Long = 4096 ‘Number of FFT bins 
Public Const BLKSIZE As Long = 2048 ‘Number of samples in capture/play block 
Public Const CAPTURESIZE As Long = 4096 ‘Number of samples in Capture Buffer 
Public Const FILTERTAPS As Long = 2048 ‘Number of taps in bandpass filter 
Private BinSize As Single ‘Size of FFT Bins in Hz 

Private order As Long ‘Calculate Order power of 2 from NFFT 
Private filterM(NFFT) As Double ‘Polar Magnitude of filter freq resp 
Private filterP(NFFT) As Double ‘Polar Phase of filter freq resp 
Private RealIn(NFFT) As Double ‘FFT buffers 
Private RealOut(NFFT) As Double 
Private ImagIn(NFFT) As Double 
Private ImagOut(NFFT) As Double 

Private IOverlap(NFFT - FILTERTAPS - 1) As Double ‘Overlap prev FFT/IFFT 
Private QOverlap(NFFT - FILTERTAPS - 1) As Double ‘Overlap prev FFT/IFFT 

Private RealOut_1(NFFT) As Double ‘Fast Convolution Filter buffers 
Private RealOut_2(NFFT) As Double 
Private ImagOut_1(NFFT) As Double 
Private ImagOut_2(NFFT) As Double 

Public FHigh As Long ‘High frequency cutoff in Hz 
Public FLow As Long ‘Low frequency cutoff in Hz 
Public Fl As Double ‘Low frequency cutoff as fraction of Fs 
Public Fh As Double ‘High frequency cutoff as fraction of Fs 
Public SSB As Boolean ‘True for Single Sideband Modes 
Public USB As Boolean ‘Sideband select variable 
Public TX As Boolean ‘Transmit mode selected 
Public IFShift As Boolean ‘True for 11.025KHz IF 

Public AGC As Boolean ‘AGC enabled 
Public AGCHang As Long ‘AGC AGCHang time factor 
Public AGCMode As Long ‘Saves the AGC Mode selection 
Public RXHang As Long ‘Save RX Hang time setting 
Public AGCLoop As Long ‘AGC AGCHang time buffer counter 
Private Vpk As Double ‘Peak filtered output signal 
Private G(24) As Double ‘Gain AGCHang time buffer 
Private Gain As Double ‘Gain state setting for AGC 
Private PrevGain As Double ‘AGC Gain during previous input block 
Private GainStep As Double ‘AGC attack time steps 
Private GainDB As Double ‘AGC Gain in dB 
Private TempOut(BLKSIZE) As Double ‘Temp buffer to compute Gain 
Public MaxGain As Long ‘Maximum AGC Gain factor 

Private FFTBins As Long ‘Number of FFT Bins for Display 
Private M(NFFT) As Double ‘Double precision polar magnitude 
Private P(NFFT) As Double ‘Double precision phase angle 
Private S As Long ‘Loop counter for samples 

Fig 2—Variable declarations. 

DSP code receives the captured sig-
nal and then outputs the processed 
signal data. 

This article extends the sound-card 
interface to a functional SDR receiver 
demonstration. To accomplish this, the 
following functions are implemented 
in software: 
• Split the stereo sound buffers into I 

and Q channels. 

• Conversion from the time domain 
into the frequency domain using 
a fast Fourier transform (FFT). 

• Cartesian-to-polar conversion of the 
signal vectors. 

• Frequency translation from the 
11.25 kHz-offset baseband IF to 
0 Hz. 

• Sideband selection. 
• Band-pass filter coefficient genera-

tion. 

• FFT fast-convolution filtering. 
• Conversion back to the time domain 

with an inverse fast Fourier trans-
form (IFFT). 

• Digital automatic gain control (AGC) 
with variable hang time. 

• Transfer of the processed signal to 
the output buffer for transmit or 
receive operation. 

The demonstration source code may 
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be downloaded from ARRLWeb.3 The 
software requires the dynamic link 
library (DLL) files from the Intel 
Signal Processing Library4 to be lo-
cated in the working directory. These 
files are included with the demo soft-
ware. 

The Software Architecture 
Fig 1 provides a block diagram of 

the DSP software architecture. The 
architecture works equally well for 
both transmit and receive with only a 
few lines of code changing between the 
two. While the block diagram illus-
trates functional modules for Ampli-
tude and Phase Correction and the 
LMS Noise and Notch Filter, discus-
sion of these features is beyond the 
scope of this article. 

Amplitude and phase correction 
permits imperfections in phase and 
amplitude imbalance created in the 
analog circuitry to be corrected in the 
frequency domain. LMS noise and 
notch filters5 are an adaptive form of 
finite impulse response (FIR) filtering 
that accomplishes noise reduction in 
the time domain. There are other tech-
niques for noise reduction that can be 
accomplished in the frequency domain 
such as spectral subtraction,6 correla-
tion7 and FFT averaging.8 

Parse the Input Buffers to 
Get I and Q Signal Vectors 

Fig 2 provides the variable and 
constant declarations for the demon-
stration code. The code for parsing the 
inBuffer() is illustrated in Fig 3. The 
left and right signal inputs must be 
parsed into I and Q signal channels 
before they are presented to the FFT 
input. The 16-bit integer left- and 
right-channel samples are interleaved, 
therefore the code shown in Fig 3 must 
be used to split the signals. The arrays 
RealIn() and RealOut() are used to 
store the I signal vectors and the ar-
rays ImagIn() and ImagOut() are used 
to store the Q signal vectors. This cor-
responds to the nomenclature used in 
the complex FFT algorithm. It is not 
critical which of the I and Q channels 
goes to which input because one can 
simply reverse the code in Fig 3 if the 
sidebands are inverted. 

The FFT: Conversion to the 
Frequency Domain 

Part 1 of this series discussed how 
the FFT is used to convert discrete- 
time sampled signals from the time 
domain into the frequency domain (see 
Note 1). The FFT is quite complex to 
derive mathematically and somewhat 
tedious to code. Fortunately, Intel has 
provided performance-optimized code 
in DLL form that can be called from a 

Erase RealIn, ImagIn 

For S = 0 To CAPTURESIZE - 1 Step 2 ‘Copy I to RealIn and Q to ImagIn 
     RealIn(S \ 2) = inBuffer(S + 1) ‘Zero stuffing second half of 

     ImagIn(S \ 2) = inBuffer(S) ‘RealIn and ImagIn Next S 

Fig 3—Parsing input buffers into I and Q signal vectors. 

Fig 4—FFT output bins. 

nspzrFftNip RealIn, ImagIn, RealOut, ImagOut, order, NSP_Forw 
nspdbrCartToPolar RealOut, ImagOut, M, P, NFFT ‘Cartesian to polar 

Fig 5—Time domain to frequency domain conversion using the FFT. 

Fig 6—Offset baseband IF diagram. The local oscillator is shifted by 11.025 kHz so that 
the desired-signal carrier frequency is centered at an 11,025-Hz offset within the FFT 
output. To shift the signal for subsequent filtering the desired bins are simply copied to 
center the carrier frequency, fc, at 0 Hz. 

single line of code for this and other 
important DSP functions (see Note 4). 

The FFT effectively consists of a 
series of very narrow band-pass filters, 
the outputs of which are called bins, 
as illustrated in Fig 4. Each bin has a 
magnitude and phase value represen-
tative of the sampled input signal’s 
content at the respective bin’s center 
frequency. Overlap of adjacent bins re-
sembles the output of a comb filter as 
discussed in Part 1. 

The PC SDR uses a 4096-bin FFT. 
With a sampling rate of 44,100 Hz, the 
bandwidth of each bin is 10.7666 Hz 
(44,100/4096), and the center fre-
quency of each bin is the bin number 
times the bandwidth. Notice in Fig 4 
that with respect to the center fre-

quency of the sampled quadrature sig-
nal, the upper sideband is located in 
bins 1 through 2047, and the lower 
sideband is located in bins 2048 
through 4095. Bin 0 contains the car-
rier translated to 0 Hz. An FFT per-
formed on an analytic signal I + jQ 
allows positive and negative frequen-
cies to be analyzed separately. 

The Turtle Beach Santa Cruz sound 
card I use has a 3-dB frequency re-
sponse of approximately 10 Hz to 
20 kHz. (Note: the data sheet states a 
high-frequency cutoff of 120 kHz, 
which has to be a typographical error, 
given the 48-kHz maximum sampling 
rate). Since we sample the RF signal 
in quadrature, the sampling rate is 
effectively doubled (44,100 Hz times 
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two channels yields an 88,200-Hz ef-
fective sampling rate). This means 
that the output spectrum of the FFT 
will be twice that of a single sampled 
channel. In our case, the total out- 
put bandwidth of the FFT will be 
10.7666 Hz times 4096 or 44,100 Hz. 
Since most sound cards roll off near 
20 kHz, we are probably limited to a 
total bandwidth of approximately 
40 kHz. 

Fig 5 shows the DLL calls to the 
Intel library for the FFT and subse-
quent conversion of the signal vectors 
from the Cartesian coordinate system 
to the Polar coordinate system. The 
nspzrFftNip routine takes the time 
domain RealIn() and ImagIn() vectors 
and converts them into frequency do-
main RealOut() and ImagOut() vec-
tors. The order of the FFT is computed 
in the routine that calculates the fil-
ter coefficients as will be discussed 
later. NSP_Forw is a constant that 
tells the routine to perform the for-
ward FFT conversion. 

In the Cartesian system the signal 
is represented by the magnitudes of 
two vectors, one on the Real or x plane 
and one on the Imaginary or y plane. 
These vectors may be converted to a 
single vector with a magnitude (M) 
and a phase angle (P) in the polar sys-
tem. Depending on the specific DSP 
algorithm we wish to perform, one co-
ordinate system or the other may be 
more efficient. I use the polar coordi-
nate system for most of the signal pro-
cessing in this example. The 
nspdbrCartToPolar routine converts 
the output of the FFT to a polar vec-
tor consisting of the magnitudes in M() 
and the phase values in P(). This func-
tion simultaneously performs Eqs 3 
and 4 in Part 1 of this article series. 

Offset Baseband IF Conversion 
to Zero Hertz 

My original software centered the 
RF carrier frequency at bin 0 (0 Hz). 
With this implementation, one can 
display (and hear) the entire 44-kHz 
spectrum in real time. One of the prob-
lems encountered with direct-conver-
sion or zero-IF receivers is that noise 

increases substantially near 0 Hz. 
This is caused by several mechanisms: 
1/f noise in the active components, 
60/120-Hz noise from the ac power 
lines, microphonic noise caused by me-
chanical vibration and local-oscillator 
phase noise. This can be a problem for 
weak-signal work because most people 
tune CW signals for a 700-1000 Hz 
tone. Fortunately, much of this noise 
disappears above 1 kHz. 

Given that we have 44 kHz of spec-
trum to work with, we can offset the 
digital IF to any frequency within the 
FFT output range. It is simply a mat-
ter of deciding which FFT bin to des-
ignate as the carrier frequency and 
then offsetting the local oscillator by 
the appropriate amount. We then copy 
the respective bins for the desired 
sideband so that they are located at 
0 Hz for subsequent processing. In the 
PC SDR, I have chosen to use an off-
set IF of 11,025 Hz, which is one fourth 

of the sampling rate, as shown in 
Fig 6. 

Fig 7 provides the source code for 
shifting the offset IF to 0 Hz. The car-
rier frequency of 11,025 Hz is shifted 
to bin 0 and the upper sideband is 
shifted to bins 1 through 1023. The 
lower sideband is shifted to bins 3072 
to 4094. The code allows the IF shift 
to be enabled or disabled, as is re-
quired for transmitting. 

Selecting the Sideband 
So how do we select sideband? We 

store zeros in the bins we don’t want 
to hear. How simple is that? If it were 
possible to have perfect analog ampli-
tude and phase balance on the 
sampled I and Q input signals, we 
would have infinite sideband suppres-
sion. Since that is not possible, any 
imbalance will show up as an image 
in the passband of the receiver. Fortu-
nately, these imbalances can be cor-

If SSB = True Then ‘SSB or CW Modes 
        If USB = True Then 
            For S = FFTBins To NFFT - 1 ‘Zero out lower sideband 
                M(S) = 0 
            Next 
        Else 
            For S = 0 To FFTBins - 1 ‘Zero out upper sideband 
                M(S) = 0 
            Next 
        End If 
    End If 

Fig 8—Sideband selection code. 

Fig 9—FFT fast-convolution-filtering block diagram. The filter impulse-response coefficients are first converted to the frequency 
domain using the FFT and stored for repeated use by the filter routine. Each signal block is transformed by the FFT and subsequently 
multiplied by the filter frequency-response magnitudes. The resulting filtered signal is transformed back into the time domain using the 
inverse FFT. The Overlap/Add routine corrects the signal for circular convolution. 

IFShift = True ‘Force to True for the demo 

    If IFShift = True Then ‘Shift sidebands from 11.025KHz IF 
        For S = 0 To 1023 
            If USB Then 
                M(S) = M(S + 1024) ‘Move upper sideband to 0Hz 
                P(S) = P(S + 1024) 
            Else 
                M(S + 3072) = M(S + 1) ‘Move lower sideband to 0Hz 
                P(S + 3072) = P(S + 1) 
            End If 
        Next 

    End If 

Fig 7—Code for down conversion from offset baseband IF to 0 Hz. 
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rected through DSP code either in the 
time domain before the FFT or in the 
frequency domain after the FFT. These 
techniques are beyond the scope of this 
discussion, but I may cover them in a 
future article. My prototype using 
INA103 instrumentation amplifiers 
achieves approximately 40 dB of op-
posite sideband rejection without cor-
rection in software. 

The code for zeroing the opposite 
sideband is provided in Fig 8. The 
lower sideband is located in the high- 
numbered bins and the upper side-
band is located in the low-numbered 
bins. To save time, I only zero the num-
ber of bins contained in the FFTBins 
variable. 

FFT Fast-Convolution 
Filtering Magic 

Every DSP text I have read on 
single-sideband modulation and de-
modulation describes the IF sampling 
approach. In this method, the A/D con-
verter samples the signal at an IF such 
as 40 kHz. The signal is then quadra-
ture down-converted in software to 
baseband and filtered using finite im-
pulse response (FIR)9 filters. Such a 
system was described in Doug Smith’s 
QEX article called, “Signals, Samples, 
and Stuff: A DSP Tutorial (Part 1).”10 

With this approach, all processing is 
done in the time domain. 

For the PC SDR, I chose to use a 
very different approach called FFT 
fast-convolution filtering (also called 
FFT convolution) that performs all fil-
tering functions in the frequency do-
main.11  An FIR filter performs convo-
lution of an input signal with a filter 
impulse response in the time domain. 
Convolution is the mathematical 
means of combining two signals (for 
example, an input signal and a filter 
impulse response) to form a third sig-
nal (the filtered output signal).12  The 
time-domain approach works very 
well for a small number of filter taps. 
What if we want to build a very-high- 
performance filter with 1024 or more 
taps? The processing overhead of the 
FIR filter may become prohibitive. It 
turns out that an important property 
of the Fourier transform is that con-
volution in the time domain is equal 
to multiplication in the frequency do-
main. Instead of directly convolving 
the input signal with the windowed 
filter impulse response, as with a FIR 
filter, we take the respective FFTs of 
the input signal and the filter impulse 
response and simply multiply them 
together, as shown in Fig 9. To get back 
to the time domain, we perform the 
inverse FFT of the product. FFT con-
volution is often faster than direct con-
volution for filter kernels longer than 

Fig 10—FFT fast convolution filtering output. When the filter-magnitude coefficients are 
multiplied by the signal-bin values, the resulting output bins contain values only within 
the pass-band of the filter. 

Public Static Sub CalcFilter(FLow As Long, FHigh As Long) 
Static Rh(NFFT) As Double ‘Impulse response for bandpass filter 
Static Ih(NFFT) As Double ‘Imaginary set to zero 
Static reH(NFFT) As Double ‘Real part of filter response 
Static imH(NFFT) As Double ‘Imaginary part of filter response 

Erase Ih 

Fh = FHigh / Fs ‘Compute high and low cutoff 
Fl = FLow / Fs ‘as a fraction of Fs 
BinSize = Fs / NFFT ‘Compute FFT Bin size in Hz 

FFTBins = (FHigh / BinSize) + 50 ‘Number of FFT Bins in filter width 

order = NFFT ‘Compute order as NFFT power of 2 
Dim O As Long 

For O = 1 To 16 ‘Calculate the filter order 
     order = order \ 2 
     If order = 1 Then 
         order = O 
         Exit For 
     End If 
Next 

‘Calculate infinite impulse response bandpass filter coefficients 
‘with window 
nspdFirBandpass Fl, Fh, Rh, FILTERTAPS, NSP_WinBlackmanOpt, 1 

‘Compute the complex frequency domain of the bandpass filter 
nspzrFftNip Rh, Ih, reH, imH, order, NSP_Forw 
nspdbrCartToPolar reH, imH, filterM, filterP, NFFT 

End Sub 

Fig 11—Code for the generating bandpass filter coefficients in the frequency domain. 

64 taps, and it produces exactly the 
same result. 

For me, FFT convolution is easier 
to understand than direct convolution 
because I mentally visualize filters in 
the frequency domain. As described in 
Part 1 of this series, the output of the 
complex FFT may be thought of as a 
long bank of narrow band-pass filters 
aligned around the carrier frequency 

(bin 0), as shown in Fig 4. Fig 10 illus-
trates the process of FFT convolution 
of a transformed filter impulse re-
sponse with a transformed input sig-
nal. Once the signal is transformed 
back to the time domain by the inverse 
FFT, we must then perform a process 
called the overlap/add method. This 
is because the process of convolution 
produces an output signal that is 
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equal in length to the sum of the in-
put samples plus the filter taps mi-
nus one. I will not attempt to explain 
the concept here because it is best de-
scribed in the references.13 

Fig 11 provides the source code for 
producing the frequency-domain 
band-pass filter coefficients. The 
CalcFilter subroutine is passed the 
low-frequency cutoff, FLow, and the 
high-frequency cutoff, FHigh, for the 
filter response. The cutoff frequencies 
are then converted to their respective 
fractions of the sampling rate for use 
by the filter-generation routine, 
nspdFirBandpass. The FFT order is 
also determined in this subroutine, 
based on the size of the FFT, NFFT. 
The nspdFirBandpass computes the 
impulse response of the band-pass fil-
ter of bandwidth Fl() to Fh() and a 
length of FILTERTAPS. It then places 
the result in the array variable Rh(). 
The NSP_WinBlackmanOpt causes 
the impulse response to be windowed 
by a Blackman window function. For 
a discussion of windowing, refer to the 
DSP Guide.14 The value of “1” that is 
passed to the routine causes the re-
sult to be normalized. 

Next, the impulse response is con-
verted to the frequency domain by 
nspzrFftNip. The input parameters 
are Rh(), the real part of the impulse 
response, and Ih(), the imaginary part 
that has been set to zero. NSP_Forw 
tells the routine to perform the for-
ward FFT. We next convert the fre-
quency-domain result of the FFT, reH() 
and imH(), to polar form using the 
nspdbrCartToPolar routine. The filter 
magnitudes, filterM(), and filter phase, 
filterP(), are stored for use in the FFT 
fast convolution filter. Other than 
when we manually change the band- 
pass filter selection, the filter response 
does not change. This means that we 
only have to calculate the filter re-
sponse once when the filter is first se-
lected by the user. 

Fig 12 provides the code for an FFT 
fast-convolution filter. Using the 
nspdbMpy2 routine, the signal-spec-
trum magnitude bins, M(), are multi-
plied by the filter frequency-response 
magnitude bins, filterM(), to generate 
the resulting in-place filtered magni-
tude-response bins, M(). We then use 
nspdbAdd2 to add the signal phase 
bins, P(), to the filter phase bins, 
filterP(), with the result stored in- 
place in the filtered phase-response 
bins, P(). Notice that FFT convolution 
can also be performed in Cartesian 
coordinates using the method shown 
in Fig 13, although this method re-
quires more computational resources. 
Other uses of the frequency-domain 
magnitude values include FFT aver-

nspdbMpy2 filterM, M, NFFT ‘Multiply Magnitude Bins 

nspdbAdd2 filterP, P, NFFT ‘Add Phase Bins 

Fig 12—FFT fast convolution filtering code using polar vectors. 

Fig 14—Actual 500-Hz CW filter pass-band display. FFT fast-convolution filtering is used 
with 2048 filter taps to produce a 1.05 shape factor from 3 dB to 60 dB down and over 
120 dB of stop-band attenuation just 250 Hz beyond the 3 dB points. 

 ‘Convert polar to cartesian 
    nspdbrPolarToCart M, P, RealIn, ImagIn, NFFT 

    ‘Inverse FFT to convert back to time domain 
    nspzrFftNip RealIn, ImagIn, RealOut, ImagOut, order, NSP_Inv 

    ‘Overlap and Add from last FFT/IFFT:  RealOut(s) = RealOut(s) + Overlap(s) 
    nspdbAdd3 RealOut, IOverlap, RealOut, FILTERTAPS - 2 
    nspdbAdd3 ImagOut, QOverlap, ImagOut, FILTERTAPS - 2 

    ‘Save Overlap for next pass 
    For S = BLKSIZE To NFFT - 1 
        IOverlap(S - BLKSIZE) = RealOut(S) 
        QOverlap(S - BLKSIZE) = ImagOut(S) 

    Next 

 Fig 15—Inverse FFT and overlap/add code. 

‘Compute: RealIn(s) = (RealOut(s) * reH(s)) - (ImagOut(s) * imH(s)) 
    nspdbMpy3 RealOut, reH, RealOut_1, NFFT 
    nspdbMpy3 ImagOut, imH, ImagOut_1, NFFT 
    nspdbSub3 RealOut_1, ImagOut_1, RealIn, NFFT ‘RealIn for IFFT 

    ‘Compute: ImagIn(s) = (RealOut(s) * imH(s)) + (ImagOut(s) * reH(s)) 
    nspdbMpy3 RealOut, imH, RealOut_2, NFFT 
    nspdbMpy3 ImagOut, reH, ImagOut_2, NFFT 

    nspdbAdd3 RealOut_2, ImagOut_2, ImagIn, NFFT ‘ImagIn for IFFT 

Fig 13—Alternate FFT fast  convolution filtering code using cartesian vectors. 

aging, digital squelch and spectrum 
display. 

Fig 14 shows the actual spectral 
output of a 500-Hz filter using wide- 

bandwidth noise input and FFT aver-
aging of the signal over several sec-
onds. This provides a good picture of 
the frequency response and shape of 



  Nov/Dec  2002  33 

the filter. The shape factor of the 2048- 
tap filter is 1.05 from the 3-dB to the 
60-dB points (most manufacturers 
measure from 6 dB to 60 dB, a more 
lenient specification). Notice that the 
stop-band attenuation is greater than 
120 dB at roughly 250 Hz from the 
3-dB points. This is truly a brick-wall 
filter! 

An interesting fact about this 
method is that the window is applied 
to the filter impulse response rather 
than the input signal. The filter re-
sponse is normalized so signals within 
the passband are not attenuated in the 
frequency domain. I believe that this 
normalization of the filter response 
removes the usual attenuation asso-

If AGC = True Then 

        ‘If true increment AGCLoop counter, otherwise reset to zero 
        AGCLoop = IIf(AGCLoop < AGCHang - 1, AGCLoop + 1, 0) 

        nspdbrCartToPolar RealOut, ImagOut, M, P, BLKSIZE ‘Envelope Polar Magnitude 

        Vpk = nspdMax(M, BLKSIZE) ‘Get peak magnitude 

        If Vpk <> 0 Then ‘Check for divide by zero 
            G(AGCLoop) = 16384 / Vpk ‘AGC gain factor with 6 dB headroom 
            Gain = nspdMin(G, AGCHang) ‘Find peak gain reduction (Min) 
        End If 

        If Gain > MaxGain Then Gain = MaxGain ‘Limit Gain to MaxGain 

        If Gain < PrevGain Then ‘AGC Gain is decreasing 
            GainStep = (PrevGain - Gain) / 44 ’44 Sample ramp = 1 ms attack time 
            For S = 0 To 43 ‘Ramp Gain down over 1 ms period 
                M(S) = M(S) * (PrevGain - ((S + 1) * GainStep)) 
            Next 
            For S = 44 To BLKSIZE - 1 ‘Multiply remaining Envelope by Gain 
                M(S) = M(S) * Gain 
            Next 
        Else 
            If Gain > PrevGain Then ‘AGC Gain is increasing 
                GainStep = (Gain - PrevGain) / 44 ’44 Sample ramp = 1 ms decay time 
                For S = 0 To 43 ‘Ramp Gain up over 1 ms period 
                    M(S) = M(S) * (PrevGain + ((S + 1) * GainStep)) 
                Next 
                For S = 44 To BLKSIZE - 1 ‘Multiply remaining Envelope by Gain 
                    M(S) = M(S) * Gain 
                Next 
            Else 
                nspdbMpy1 Gain, M, BLKSIZE ‘Multiply Envelope by AGC gain 
            End If 
        End If 

        PrevGain = Gain ‘Save Gain for next loop 

        nspdbThresh1 M, BLKSIZE, 32760, NSP_GT ‘Hard limiter to prevent overflow 

    End If 

Fig 16 – Digital AGC code. 

ciated with windowing the signal be-
fore performing the FFT. To overcome 
such windowing attenuation, it is typi-
cal to apply a 50-75% overlap in the 
time-domain sampling process and 
average the FFTs in the frequency 
domain. I would appreciate comments 
from knowledgeable readers on this 
hypothesis. 

The IFFT and Overlap/Add— 
Conversion Back to the Time 
Domain 

Before returning to the time do-
main, we must first convert back to 
Cartesian coordinates by using 
nspdbrPolarToCart as illustrated in 
Fig 15. Then by setting the NSP_Inv 

flag, the inverse FFT is performed by 
nspzrFftNip, which places the time- 
domain outputs in RealOut() and 
ImagOut(), respectively. As discussed 
previously, we must now overlap and 
add a portion of the signal from the 
previous capture cycle as described in 
the DSP Guide (see Note 13). 
Ioverlap() and Qoverlap() store the in- 
phase and quadrature overlap signals 
from the last pass to be added to the 
new signal block using the nspdbAdd3 
routine. 

Digital AGC with 
Variable Hang Time 

The digital AGC code in Fig 16 pro-
vides fast-attack and -decay gain 
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control with variable hang time. Both 
attack and decay occur in approxi-
mately 1 ms, but the hang time may 
be set to any desired value in incre-
ments of 46 ms. I have chosen to imple-
ment the attack/decay with a linear 
ramp function rather than an expo-
nential function as described in DSP 
communications texts.15 It works ex-
tremely well and is intuitive to code. 
The flow diagram in Fig 17 outlines 
the logic used in the AGC algorithm. 

Refer to Figs 16 and 17 for the fol-
lowing description. First, we check to 
see if the AGC is turned on. If so, we 
increment AGCLoop, the counter for 
AGC hang-time loops. Each pass 
through the code is equal to a hang time 

Fig 17—Digital AGC flow diagram. 

of 46 ms. PC SDR provides hang-time 
loop settings of 3 (fast, 132 ms), 5 (me-
dium, 230 ms), 7 (slow, 322 ms) and 22 
(long, 1.01 s). The hang-time setting is 
stored in the AGCHangvariable. Once 
the hang-time counter resets, the de-
cay occurs on a 1-ms linear slope. 

To determine the AGC gain require-
ment, we must detect the envelope of 
the demodulated signal. This is easily 
accomplished by converting from Car-
tesian to polar coordinates. The value 
of M() is the envelope, or magnitude, 
of the signal. The phase vector can be 
ignored insofar as AGC is concerned. 
We will need to save the phase val-
ues, though, for conversion back to 
Cartesian coordinates later. Once we 

have the magnitudes stored in M(), it 
is a simple matter to find the peak 
magnitude and store it in Vpk with the 
function nspdMax. After checking to 
prevent a divide-by-zero error, we com-
pute a gain factor relative to 50% of 
the full-scale value. This provides 6 dB 
of headroom from the signal peak to 
the full-scale output value of the DAC. 
On each pass, the gain factor is stored 
in the G() array so that we can find 
the peak gain reduction during the 
hang-time period using the nspdMin 
function. The peak gain-reduction fac-
tor is then stored in the Gain variable. 
Note that Gain is saved as a ratio and 
not in decibels, so that no log/antilog 
conversion is needed. 
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The next step is to limit Gain to the 
MaxGain value, which may be set by 
the user. This system functions much 
like an IF-gain control allowing Gain 
to vary from negative values up to the 
MaxGain setting. Although not pro-
vided in the example code, it is a 
simple task to create a front panel con-
trol in Visual Basic to manually set 
the MaxGain value. 

Next, we determine if the gain must 
be increased, decreased or left un-
changed. If Gain is less than PrevGain 
(that is the Gain setting from the sig-
nal block stored on the last pass 
through the code), we ramp the gain 
down linearly over 44 samples. This 
yields an attack time of approximately 
1 ms at a 44,100-Hz sampling rate. 
GainStep is the slope of the ramp per 
sample time calculated from the 
PrevGain and Gain values. We then 
incrementally ramp down the first 44 
samples by the GainStep value. Once 
ramped to the new Gain value, we 
multiply the remaining samples by the 
fixed Gain value. 

If Gain is increasing from the 
PrevGain value, the process is simply 
reversed. If Gain has not changed, all 
samples are multiplied by the current 
Gain setting. After the signal block has 
been processed, Gain is saved in 
PrevGain for the next signal block. 
Finally, nspdbThresh1 implements a 
hard limiter at roughly the maximum 
output level of the DAC, to prevent 
overflow of the integer-variable out-
put buffers. 

Send the Demodulated or 
Modulated Signal to the 
Output Buffer 

The final step is to format the pro-
cessed signal for output to the DAC. 
When receiving, the RealOut() signal 
is copied, sample by sample, into both 
the left and right channels. For 
transmiting, RealOut() is copied to the 
right channel and ImagOut() is cop-
ied to the left channel of the DAC. If 
binaural receiving is desired, the I and 
Q signal can optionally be sent to the 
right and left channels respectively, 
just as in the transmit mode. 

Controlling the 
Demonstration Code 

The SDR demonstration code (see 
Note 3) has a few selected buttons for 
setting AGC hang time, filter selection 
and sideband selection. The code for 
these functions is shown in Fig 18. The 
code is self-explanatory and easy to 
modify for additional filters, different 
hang times and other modes of opera-
tion. Feel free to experiment. 

Private Sub cmdAGC_Click(Index As Integer) 

    MaxGain = 1000 ‘Maximum digital gain = 60dB 

    Select Case Index 

        Case 0 
            AGC = True 
            AGCHang = 3 ‘3 x 0.04644 sec = 139 ms 
        Case 1 
            AGC = True 
            AGCHang = 7 ‘7 x 0.04644 sec = 325 ms 
        Case 2 
            AGC = False ‘AGC Off 
    End Select 

End Sub 

Private Sub cmdFilter_Click(Index As Integer) 

    Select Case Index 

        Case 0 
            CalcFilter 300, 3000 ‘2.7KHz Filter 
        Case 1 
            CalcFilter 500, 1000 ‘500Hz Filter 
        Case 2 
            CalcFilter 700, 800 ‘100Hz Filter 
    End Select 

End Sub 

Private Sub cmdMode_Click(Index As Integer) 

    Select Case Index 

        Case 0 ‘Change mode to USB 
            SSB = True 
            USB = True 
        Case 1 ‘Change mode to LSB 
            SSB = True 
            USB = False 
    End Select 

End Sub 

Fig 18 – Control code for the demonstration front panel. 

The Fully Functional SDR-1000 
Software 

The SDR-1000, my nomenclature 
for the PC SDR, contains a significant 
amount of code not illustrated here. I 
have chosen to focus this article on the 
essential DSP code necessary for 
modulation and demodulation in the 
frequency domain. As time permits, I 
hope to write future articles that delve 
into other interesting aspects of the 
software design. 

Fig 19 shows the completed front- 
panel display of the SDR-1000. I have 
had a great deal of fun creating—and 
modifying many times—this user in-
terface. Most features of the user in-
terface are intuitive. Here are some 
interesting capabilities of the SDR- 
1000: 

• A real-time spectrum display with 
one-click frequency tuning using a 
mouse. 

• Dual, independent VFOs with data-
base readout of band-plan alloca-
tion. The user can easily access and 
modify the band-plan database. 

• Mouse-wheel tuning with the abil-
ity to change the tuning rate with a 
click of the wheel. 

• A multifunction digital- and analog- 
readout meter for instantaneous 
and average signal strength, AGC 
gain, ADC input signal and DAC 
output signal levels. 

• Extensive VFO, band and mode con-
trol. The band-switch buttons also 
provide a multilevel memory on the 
same band. This means that by 
pressing a given band button 
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multiple times, it will cycle through 
the last three frequencies visited on 
that band. 

• Virtually unlimited memory capabil-
ity is provided through a Microsoft 
Access database interface. The 
memory includes all key settings of 
the radio by frequency. Frequencies 
may also be grouped for scanning. 

• Ten standard filter settings are 
provided on the front panel, plus in-
dependent, continuously variable 
filters for both CW and SSB. 

• Local and UTC real-time clock dis-
plays. 

• Given the capabilities of Visual 
Basic, the possibility for enhance-
ment of the user interface is almost 
limitless. The hard part is “shooting 
the engineer” to get him to stop de-
signing and get on the air. 
There is much more that can be 

accomplished in the DSP code to cus-
tomize the PC SDR for a given appli-
cation. For example, Leif Åsbrink, 
SM5BSZ, is doing interesting weak- 
signal moonbounce work under 
Linux.16 

Also, Bob Larkin, W7PUA, is using 
the DSP-10 he first described in the 
September, October and November 
1999 issues of QST to experiment with 
weak-signal, over-the-horizon micro-
wave propagation.17 

Coming in the Final Article 
In the final article, I plan to de-

scribe ongoing development of the 
SDR-1000 hardware. (Note: I plan to 
delay the final article so that I am able 
to complete the PC board layout and 
test the hardware design.) Included 
will be a tradeoff analysis of gain dis-
tribution, noise figure and dynamic 
range. I will also discuss various ap-
proaches to analog AGC and explore 
frequency control using the AD9854 
quadrature DDS. 

Several readers have indicated in-
terest in PC boards. To date, all proto-
type work has been done using 
“perfboards.” At least one reader has 
produced a circuit board, that person 
is willing to make boards available to 
other readers. If you e-mail me, I will 

gladly put you in contact with those 
who have built boards. I also plan to 
have a Web site up and running soon 
to provide ongoing updates on the 
project. 
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