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The Discrete Fourier Transform and the Need for Window Functions 
 

The Discrete Fourier Transform (DFT) is used to find the frequency spectrum of a discrete-time signal.  A 

computationally efficient version called the Fast Fourier Transform (FFT) is normally used to calculate 

the DFT.  But, as many have found to their dismay, the FFT, when used alone, usually does not provide 

an accurate spectrum.  The reason is a phenomenon called spectral leakage. 

 

Spectral leakage can be reduced drastically by using a window function in conjunction with the DFT.  In 

this article, we’ll see why spectral leakage occurs, then we’ll introduce window functions and show how 

they improve the spectrum. 

 

For a discrete-time sequence x(n), the DFT is defined as: 

 

𝑋(𝑘) = ∑ x(n)e
−j2πkn

N        

𝑁−1

𝑛=0

  (1) 

where 

X(k) = discrete frequency spectrum of time sequence x(n) 

N = number of samples of x(n) and X(k) 

n = time index = 0: N-1 

k = frequency index 

 

We see that by definition, the DFT applies to a finite-length signal of N samples.  For sample time of Ts, 

the discrete-time variable is given by: 

 

t = nTs                                        (2) 

 

For sample frequency fs = 1/Ts, the discrete frequency variable is given by: 

 

  f = k*fs/N                                      (3) 

 

In general, X(k) is complex.  For real x(n), the real part of X(k) is even with respect to f = fs/2, and the 

imaginary part is odd.   

 

The DFT is able to compute a spectrum of any signal whose duration is N samples or less.  Since many 

signals that we are interested in don’t have a nicely defined start and end, we end up using a segment of 

the signal of length N to compute the DFT.  As an example, consider sinewaves of 8 or 9 Hz, sampled at 

fs = 128 Hz.  We’ll let N = L = 64 samples, where we use L in place of N for convenience in subsequent 

developments.  Matlab code to create an 8 Hz sinewave and compute its DFT is listed below, where we 
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use the Matlab function fft to compute the DFT of Equation 1.  The function computes L values of the 

discrete spectrum, i.e., k = 0: L-1. 

 
fs= 128;         % Hz sample frequency 
Ts= 1/fs;        % s sample time 
L= 64;           % total number of samples 

  
f0= 8;           % Hz sine frequency 
n= 0:L-1;        % time index 

  
x= sin(2*pi*f0*n*Ts)*2/L;  % discrete-time sinusoid 

  
X = fft(x,L);    % discrete spectrum via DFT 
Xmag= abs(X);    % magnitude of X 

  
k= 0:L-1;        % frequency index 
f= k*fs/L;       % Hz  discrete frequency 

 

 

Here, we have scaled the sine amplitude by 2/L in order to obtain a magnitude of the spectral 

components of 1.0.  Note that for the complex vector X, the Matlab function abs computes the 

magnitude of each element of X.   

 

The discrete-time sinusoid x(n) is plotted in the top of Figure 1, where we see that there are exactly four 

cycles of the sinewave in 64 samples.  The DFT is plotted in the middle for discrete frequencies from 0 to 

fs.  X(k) is pure imaginary, which occurs because x(n) is an odd function.  The bottom plot shows the 

magnitude of X(k), plotted over 0 to fs/2.  As dictated by Equation 3, the discrete frequencies or bins are 

spaced fs/L = 2 Hz.  The plot shows a single spectral component at 8 Hz. 

 

So far, so good.  But now let’s try the same Matlab code at a different sine frequency: 

 
f0= 9;           % Hz 

 

The sinusoid is plotted in the top of Figure 2, where there are now 4.5 cycles in 64 samples.  The 

magnitude of X(k) is plotted in the bottom plot.  The ugly-looking spectrum is spread over many bins:  

this is the aforementioned spectral leakage phenomenon.  Looking at the frequency axis, we see an 

obvious problem:  there is no bin at 9 Hz.  As we’ll see, there is no perfect fix for this problem, but we 

can improve things. 
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Figure 1.  DFT of a sinusoid.  f0 = 8 Hz, fs = 128 Hz, L = 64 samples.                     

  Top:  Discrete-time sinewave.  Middle:  X(f) for f = 0 to fs.    Bottom:  |X(f)| for f = 0 to fs/2.   
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Figure 2.  DFT of a sinusoid.  f0 = 9 Hz, fs = 128 Hz, L = 64 samples.               

Top:  Discrete-time sinewave.  Bottom:  |X(f)| for f = 0 to fs/2.   

 

 

An Inconvenient Window 

 

Figure 3 provides a view of capturing L samples of a sinewave.  The top plot shows samples of the 

sinewave.  The middle plot shows a rectangle function that has L = 64 samples equal to 1.0.  The bottom 

plot shows the result when we multiply the sinewave by the rectangle function on a sample-by-sample 

basis. 

 

Basically, we are opening a window that captures L samples of the sinewave, and the window is just a 

rectangle function.  Windowing occurs whenever the duration of the captured signal exceeds t = L*Ts, 

which is very often the case for real-world signals.  Mathematically, windowing is element-by-element 

multiplication of the sinewave by the window function – that is, modulation of the sinewave by the 

window function.   
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Figure 3.  Windowing by the rectangular window function.                    

Top:  sinewave to be captured.  Middle:  rectangular window function.  Bottom:  windowed sinewave. 

 

When using the DFT, we can see the effect of the rectangular window more clearly by keeping the zero-

padding at the end of the sinewave (zero-valued samples above n = 63 in Figure 3).  This will give us a 

smaller discrete frequency step of fs/N, where N is the total number of samples, including zero-padding. 

 

The following Matlab code generates 64 samples of a sinewave as before, with f0 = 8 Hz.  Then zeros are 

appended to obtain a total of 8*64 = 512 samples.  We then find the DFT of this zero-padded signal.  

(Note:  although we explicitly append zeros here, the Matlab FFT function will automatically zero-pad 

the signal x if length of x is less than N). 

 
fs= 128;        % Hz sample frequency 
Ts= 1/fs;       % s sample time 
L= 64;          % number of sinewave samples 
f0= 8;          % Hz sine frequency 
n= 0:L-1;       % time index      

  
u= sin(2*pi*f0*n*Ts)*2/L;    % discrete-time sinusoid 
R= 8;                   % zero-padding factor 
N= R*L;                 % total samples with zero-padding 
x= [u zeros(1,N-L)];    % zero-padded signal 

  
X = fft(x,N);           % discrete spectrum via DFT 
Xmag= abs(X);           % magnitude of X 
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k= 0:N-1;     % frequency index 
f= k*fs/N;    % Hz discrete frequency 

 

The zero-padded signal x is plotted in the top of Figure 4, and the magnitude of the spectrum X is 

plotted in the bottom, where we are limiting the frequency axis to 0 to 32 Hz (fs/4).  Spectral 

components due to the modulation of the sinewave by the rectangular window that were not seen in 

Figure 1 are now visible.  (The components of the L-point DFT of Figure 1 are indicated by the blue 

circles).  The spectrum near 8 Hz is spread out by the modulation, and there are sidelobes.  We also see 

that in this special case where the sine’s spectrum falls exactly on a bin, the components at the other 

bins of the L-point DFT are zero. 

 

Now let 

 
f0= 9;       % Hz 

 

The zero-padded signal x is plotted in the top of Figure 5, and the magnitude of the spectrum X is 

plotted in the bottom.  We can now see that the spectral leakage components of Figure 2 all fall at 

sidelobe peaks of the spectrum.  Furthermore, the amplitude of the sidelobes of Xmag decreases very 

slowly with frequency.  Basically, the rectangular window has made a mess of the spectrum! 

 

 
Figure 4.  Rectangular windowing of sinewave, with zero-padding.  f0 = 8 Hz, fs = 128 Hz    

    Top:  Windowed sinewave with zero padding. 

    Bottom:  Magnitude spectrum of windowed sinewave. 
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Figure 5.  Rectangular windowing of sinewave, with zero-padding.  f0 = 9 Hz, fs = 128 Hz       

    Top:  Windowed sinewave with zero padding. 

    Bottom:  Magnitude spectrum of windowed sinewave. 

 

 

Spectrum of the Rectangular Window 

 

Figures 4 and 5 showed the spectra of windowed sinusoids.  Now let’s find the spectrum of the 

rectangular window itself.  

 

The following Matlab code generates a window of L= 64 ones, then appends zeros to obtain a total of N 

= 8*64 = 512 samples, as shown in the top plot of Figure 6.  We find the DFT magnitude Xmag of this 

zero-padded rectangular window, then we swap the left and right halves of Xmag to obtain a spectrum 

centered at 0 Hz.  We plot this shifted magnitude response with frequency units of fs/L in the bottom 

plot of Figure 6.   

 
fs= 1;          % Hz sample frequency 
L= 64;          % length of rectangular window 
R= 8;           % zero-padding factor 
N= R*L;         % total samples with zero-padding 

  
x= [ones(1,L) zeros(1,N-L)]/L;   % rectangular window with zero padding 

  
X = fft(x,N);    % discrete spectrum via DFT 
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Xmag= abs(X);    % magnitude of X 

  
k= 0:N-1;        % frequency index 
f= k*fs/N;       % Hz frequency 

  
% spectrum centered at 0 Hz 
Xmag_shift = fftshift(Xmag);   % swap right half and left half of Xmag 
f_shift= f- fs/2;              % shift freq range to -fs/2:fs/2 

 

 

The functional form of the spectrum magnitude plotted in the bottom of Figure 6 is given by: 

 

|𝑋(𝑘)| = |
sin (

𝜋𝑘𝐿
𝑁

)

sin (
𝜋𝑘
𝑁 )

|             (4) 

 

where k is the frequency index, L is the length of the window, and N is the length of x, including zero 

padding.  See Appendix A for a derivation of equation 4.  The rectangular window’s spectrum has large 

sidelobes that decay slowly with frequency.  As we have seen, these unwanted sidelobes appear on the 

spectrum of our sinewaves.  The sidelobes look even worse when plotted on a dB magnitude scale, as 

we’ll see.  Finally, note that the mainlobe bandwidth is inversely proportional to L:  null-null bandwidth = 

2*fs/L. 

 

 

 
Figure 6.  Spectrum of the rectangular window.                                  

    Top:  Zero-padded window.  Bottom:  Spectrum magnitude centered at 0 Hz. 
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Comparing Figure 4 or 5 with Figure 6, you may wonder why, given that the window spectrum of Figure 

6 is symmetrical, the spectrum of the windowed sinewave is not.  If multiplication (modulation) in the 

time domain is equivalent to convolution in the frequency domain, shouldn’t the convolution of the 

window with a single spectral component be symmetrical?  This would be the case for continuous-time 

signals, but for discrete-time signals, the rule is: “multiplication in the time domain is equivalent to 

circular convolution in the frequency domain”.  Basically, the convolution components that would fall 

outside the range of 0 to fs under linear convolution wrap-around and add to the spectrum under 

circular convolution, causing the asymmetry seen in Figures 4 and 5.  See Appendix B for further details. 

 

Improved Spectrum using Window Functions 

 

Given that the rectangular window has such a deleterious effect on the DFT, we ask:  is there any way to 

improve things?  There is, and it involves changing the shape of the window.  We desire a window that 

has a more confined spectrum than the rectangular window.   

 

The top of Figure 7 plots samples of a sinewave, as was shown in Figure 3.  The middle plot shows a 

window function with L = 64 samples that has a smooth shape whose amplitude starts and ends near 

zero.  The bottom plot shows the result when we multiply the sinewave by the window function on a 

sample-by-sample basis.  The idea is to multiply the signal by this window, then take the DFT.  At first 

blush, this looks like a drastic operation; after all, we’re attenuating a large portion of the L samples.  But 

it is less drastic than the abrupt chopping done by the rectangular window.  
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            Figure 7. Windowing by a smooth window function.           

Top:  sinewave to be captured.  Middle:  window function.  Bottom:  windowed sinewave 

 

 

The window function shown in Figure 7 is the often-used Hann, or Hanning window, and is given by [1]: 

 

𝑤(𝑛) = 0.5 (1 − cos (
2𝜋𝑛

𝐿
)) , 𝑛 = 0: 𝐿 − 1         (5)    

 

As an example, for L = 8, we have:  w = [0 0.1464 0.5 0.8536 1 0.8536 0.5 0.1464].  

Note that Equation 5 is implemented by the Matlab function hann(L,’periodic’). 

 

Let’s find the spectrum of a sinewave using the Hanning window.  Again, we’ll use a 9 Hz sinewave of 

length L = 64 samples, with fs = 128 Hz.  In the following Matlab code, we create a Hanning window of 

length L, then multiply the sine with the window on a sample-by-sample basis (The Matlab operator .* 

performs this operation).  We then zero-pad the windowed sinewave u to obtain the signal x with total 

length of 512 samples (The factor of 2 in the computation of x scales the spectrum magnitude for a 

maximum value of 1.0).  The windowed, zero-padded sinewave x is shown in the top of Figure 8.  Keep 

in mind that the zero-padding shown is used to increase the frequency resolution of the spectrum, but is 

not a requirement for computing the DFT.  Finally, we take the DFT of x.  The resulting spectrum 

magnitude is shown in the bottom of Figure 8, where we are limiting the frequency axis to 0 to 32 Hz 

(fs/4). 
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fs= 128;        % Hz sample frequency 
Ts= 1/fs;       % s sample time 
f0 = 9;         % Hz sine frequency 
L= 64;          % length of window 
R= 8;           % zero-padding factor 
N= R*L;         % total samples with zero-padding 
n= 0:L-1;       % time index prior to zero padding 

  
win= .5*(1-cos(2*pi*n/L));  % hanning window of length L 

 
u= sin(2*pi*f0*n*Ts)*2/L;   % discrete-time sine 
u_win= win.*u;              % windowed sine 

  
x= 2*[u_win zeros(1,N-L)];   % windowed, zero-padded sine 

  
X = fft(x,N);           % discrete spectrum via DFT 
Xmag= abs(X);           % magnitude of X 

  
k= 0:N-1;               % frequency index 
f= k*fs/N;              % Hz frequency 

 

 
Figure 8.   Hanning windowed sinewave, with zero-padding.  f0 = 9 Hz, fs = 128 Hz   

    Top:  Windowed sinewave with zero padding. 

    Bottom:  Magnitude spectrum of windowed sinewave. 
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Comparing the spectrum of Figure 8 to that of figure 5, we see that the sidelobes are much lower.  

However, we still have the spectrum near 9 Hz spread-out due to modulation by the window function 

(it’s even somewhat wider than for the rectangular window).  Unfortunately, this is the case for any 

window function. 

 

We can plot the two spectra on a dB scale using:  XdB= 20*log10(Xmag); 

 

The dB spectra are shown in Figure 9.  Again, the spectrum labeled “rectangular” is what you get if you 

just take the DFT of the captured sinewave:  it is the spectrum of a sinewave that is modulated by a 

rectangular window function.  The spectrum labeled “Hanning” results from modulating the sinewave 

with a Hanning window before taking the DFT.  As already mentioned, using the Hanning window has 

greatly improved the sidelobes, but the main lobe is annoyingly wide, with a -3 dB bandwidth of almost 

3 Hz.  Note, though, that mainlobe bandwidth is inversely proportional to L.  So, at the price of 

increasing L, we can decrease this bandwidth.  For example, Figure 10 plots the windowed sinewave 

spectra for f0 = 9.25 Hz and L = 256.  The Hanning window case now looks somewhat more like an ideal 

sine spectrum.   

 

One lesson we have learned can be stated as follows:  suppose you captured an unknown signal, took 

the zero-padded DFT with a Hanning window, and got a spectrum that looked like Figure 10.  You might 

be tempted to think that the sidelobes seen in the plot were a feature of the signal itself.  But we now 

know that the sidelobes are due to the window function. 

 

The spectra of Figure 10 used zero-padding with a DFT length N = 8*L.  Zero-padding is not necessary to 

obtain a valid spectrum:  for example, Figure 11 shows the spectra with no zero padding.  Here, L = N = 

256, and discrete frequency step fs/L = 128/256 = 0.5 Hz (thus, our choice of f0 = 9.25 Hz falls halfway 

between discrete frequency bins).  Note that the peaks of both spectra are lower that the peaks for the 

cases with zero-padding.  This occurs because f0 falls on a frequency bin for the zero-padded case, but 

not for the non-zero-padded case.  Finally, we should keep in mind that the skirts of the response are 

points on the sidelobes of Figure 10. 

 

Comparing the spectra of the window functions themselves, Figure 12 plots the dB spectra of the 

rectangular and Hanning functions, centered at 0 Hz.  Both functions have bandwidth inversely 

proportional to L.  The two most important properties of a window function are bandwidth (i.e., noise 

bandwidth) and sidelobe level.  The rectangular window has very high sidelobes that fall off rather 

slowly vs. frequency (first sidelobe at -13 dB from main lobe).  The Hanning window has lower sidelobes 

(first sidelobe at -31.5 dB), but wider bandwidth.  In general, window functions with lower sidelobe level 

have wider bandwidth.  Sidelobe level is particularly important when trying to display a small signal in 

the presence of a large signal at a different frequency.  I discussed window function properties in an 

earlier post [2].  (Note this earlier post used different definitions of the quantities N and L). 
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There are many window functions with lower sidebands than the Hanning window [3]. The Kaiser 

window has adjustable sidelobe level; I discussed it briefly in an earlier post [4]. 

 
Figure 9.  Spectra of sinewaves using Hanning and rectangular windows.   

                  f0 = 9 Hz, fs = 128 Hz, L= 64, N = 8*L = 512.      

 

 
Figure 10.  Spectra of sinewaves using Hanning and rectangular windows.   

                    f0 = 9.25 Hz, fs = 128 Hz, L= 256, N = 8*L = 2048.          
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Figure 11.  Spectra of sinewaves using Hanning and rectangular windows.   

                    f0 = 9.25 Hz, fs = 128 Hz, L = N = 256 (no zero-padding).     

 

 
Figure 12.  Spectra of Hanning and rectangular windows.          
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Appendix A.  Formula for the DFT of a rectangular window 

 

 

0 L-1 N-1 n

1
x(n)

 
 

Figure A.1  Rectangular window with L samples equal to 1. 

 

Let a rectangular window x(n) have L samples equal to 1, and let the total number of DFT samples be N 

(N > L), as shown in Figure A.1.  Then, from Equation 1, 

 

𝑋(𝑘) = ∑(1) ∗ 𝑒−𝑗2𝜋𝑛𝑘/𝑁

𝐿−1

𝑛=0

            (𝐴 − 1) 

 

Making the substitution: 

 

            𝑟 = 𝑒−𝑗2𝜋𝑘/𝑁                       (𝐴 − 2) 

gives: 

 

𝑋(𝑘) = ∑ 𝑟𝑛

𝐿−1

𝑛=0

 

 

This geometric series is equivalent to the quotient [5,6]: 

 

𝑋(𝑘) =
1 − 𝑟𝐿

1 − 𝑟
 

 

Now multiply top and bottom by 𝑟−1/2 ∗ 𝑟−𝐿/2: 

 

𝑋(𝑘) =
𝑟−1/2

𝑟−𝐿/2
  

𝑟−𝐿/2

𝑟−1/2
  

1 − 𝑟𝐿

1 − 𝑟
=  

𝑟−1/2

𝑟−𝐿/2
  

𝑟−𝐿/2 − 𝑟𝐿/2

𝑟−1/2 − 𝑟1/2
 

 

= 𝑟(𝐿−1)/2  
𝑟−𝐿/2 − 𝑟𝐿/2

𝑟−1/2 − 𝑟1/2
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Now apply Equation A-2 again, to obtain: 

 

𝑋(𝑘) =  𝑒−𝑗𝜋𝑘(𝐿−1)/𝑁  
𝑒𝑗𝜋𝑘𝐿/𝑁 − 𝑒−𝑗𝜋𝑘𝐿/𝑁

𝑒𝑗𝜋𝑘/𝑁 − 𝑒−𝑗𝜋𝑘/𝑁
 

 

Applying Euler’s identity for the sine*: 

 

𝑋(𝑘) =  𝑒−𝑗𝜋𝑘(𝐿−1)/𝑁  
sin (

𝜋𝑘𝐿
𝑁

)

sin (
𝜋𝑘
𝑁

)
 

 

The exponential term has magnitude of  1, so: 

 

|𝑋(𝑘)| = |
sin (

𝜋𝑘𝐿
𝑁 )

sin (
𝜋𝑘
𝑁

)
| 

 

 

 

*   𝑠𝑖𝑛𝜃 =
𝑒𝑗𝜃−𝑒−𝑗𝜃

2𝑗
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Appendix B.  Spectrum of a windowed sinewave using circular convolution 

 

For discrete-time signals, multiplication in the time domain is equivalent to circular convolution in the 

frequency domain.  This modulation property of the DFT is stated as [7]: 

 

𝑔(𝑛)ℎ(𝑛)  ⇔  
1

𝑁
∑ 𝐺(𝑚)

𝑁−1

𝑚=0

𝐻((𝑘 − 𝑚)𝑚𝑜𝑑 𝑁)           (𝐵 − 1) 

 

Where the symbol ⇔ indicates DFT/Inverse DFT and there are N discrete frequencies. 

 

We can use Equation B-1 as an alternative method to find the spectrum of a sinewave with rectangular 

windowing shown in Figure 4.  The following Matlab code computes these vectors: 

 

x rectangular window with zero padding (time sequence) 

X DFT of x 

U spectrum of 8 Hz sine 

Y circular convolution of U and X 

 

Circular convolution is performed using the Matlab function cconv(U,X,N).  Note that the scale 

factor of 1/N in equation B-1 is not used here. 

 
fs= 128;        % Hz sample frequency 
L= 64;          % length of rectangular window 
R= 8;           % zero-padding factor 
N= R*L;         % total samples with zero-padding 

  
x= [ones(1,L) zeros(1,N-L)]/L;   % rectangular window with zero padding 

  
X = fft(x,N);    % DFT of zero-padded rectangular window 
Xmag= abs(X);    % magnitude of X 

  
k= 0:N-1;     % frequency index 
f= k*fs/N;    % Hz  frequency 

 
% spectrum of sin(2*pi*8*n*Ts)*2/L 
U= [zeros(1,32) -j zeros(1,N-65) j zeros(1,31)]; 

  
Y= cconv(U,X,N);       % cyclic convolution of sin and window spectra 
Ymag= abs(Y);          % magnitude of Y 

 

The top plot of Figure B.1 shows the spectrum U of an 8 Hz sinewave with the zero padding.  Sample rate 

is 128 Hz, and the spectrum is plotted over 0 to fs.  The middle plot shows the magnitude spectrum 

Xmag of the rectangular window with zero padding.  The bottom plot shows the magnitude Ymag of the 

circular convolution of the U and X.  The spectrum matches that of Figure 4 (note Figure 4 frequency 

range is limited to 0 to 32 Hz).  The asymmetry of the spectrum around 8 Hz follows from the modulus 
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operation upon the frequency indexes shown in Equation B-1.  Basically, the convolution components 

that would fall outside the range of 0 to fs under linear convolution wrap-around and add to the 

spectrum under circular convolution. 

 

 

                
Figure B.1  Rectangular windowing of a sinewave in the frequency domain using circular convolution.  

                  fs= 128 Hz.  Top:  Sine spectrum, f = 0 to fs.  Middle:  Magnitude of rectangular window’s 

                  spectrum.  Bottom:  Magnitude of Circular convolution of sine and rectangular window.     
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